Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897076

RESUMO

Redox flow batteries (RFB's) operate by storing electrons on soluble molecular anolytes and catholytes, and large increases in the energy density of RFB's could be achieved if multiple electrons could be stored in each molecular analyte. Here, we report an organoaluminum analyte, [(I2P-)2Al]+, in which four electrons can be stored on organic ligands, and for which charging and discharging cycles performed in a symmetric nonaqueous RFB configuration remain stable for over 100 cycles at 70% state of charge and 97% Coulombic efficiency (I2P is a bis(imino)pyridine ligand). The stability of the analyte is promoted by the kinetic inertness of the anolyte to trace water in solvents and by the redox inertness of the Al(III) ion to the applied cur-rent. The solubility of the analyte was optimized by exchanging the counter anion for trifluoromethane sulfonate (triflate) and the cell was further optimized using graphite rods as electrodes which, in comparison with glassy carbon and reticulated vitreous carbon, eliminated deposition of analyte on the electrode. Proof-of principle experiments performed with an asym-metric NRFB configuration further demonstrate that up to four electrons can be stored in the cell with no degradation of the analyte over multiple cycles that show 96% Coulombic efficiency.

2.
Inorg Chem ; 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883068

RESUMO

Syntheses of square planar (SP) coordination complexes of gallium(III) are reported herein. Using the pyridine diimine ligand (PDI), we prepared both (PDI2-)GaH (4) and (PDI2-)GaCl (5), which were spectroscopically and structurally characterized. Reduction of PDI using Na metal afforded "Na2PDI", which reacts with in situ-prepared "GaHCl2" or GaCl3 to afford the SP 4 and 5. The planar geometry of these and previously reported SP Al(III) complexes is attributed to energetic stabilization derived from a ring-current effect, or metalloaromaticity. Typically, aromaticity in metal-containing ring systems can be difficult to characterize or confirm experimentally. An experimental approach employing proton NMR spectroscopy and described here provided an estimate of a downfield chemical shift promoted by a small ring-current associated with metalloaromaticity. Near infrared spectroscopic analyses display ligand-metal charge transfer bands which support the assignment of aromaticity. The SP complexes (PDI2-)AlH (1), (PDI2-)AlCl (2), (PDI2-)AlI (3), 4, and 5 are all discussed in this report, using aromaticity as a model for their electronic structure and reactivity properties.

3.
J Am Chem Soc ; 142(27): 11674-11679, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539370

RESUMO

We report the first example of enantioselective, intermolecular diarylcarbene insertion into Si-H bonds for the synthesis of silicon-stereogenic silanes. Dirhodium(II) carboxylates catalyze an Si-H insertion using carbenes derived from diazo compounds where selective formation of an enantioenriched silicon center is achieved using prochiral silanes. Fourteen prochiral silanes were evaluated with symmetrical and prochiral diazo reactants to produce a total of 25 novel silanes. Adding an ortho substituent on one phenyl ring of a prochiral diazo enhances enantioselectivity up to 95:5 er with yields up to 98%. Using in situ IR spectroscopy, the impact of the off-cycle azine formation is supported based on the structural dependence for relative rates of diazo decomposition. A catalytic cycle is proposed with Si-H insertion as the rate-determining step, supported by kinetic isotope experiments. Transformations of an enantioenriched silane derived from this method, including selective synthesis of a novel sila-indane, are demonstrated.

4.
Arch Toxicol ; 94(6): 1995-2007, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239239

RESUMO

Acute intoxication with picrotoxin or the rodenticide tetramethylenedisulfotetramine (TETS) can cause seizures that rapidly progress to status epilepticus and death. Both compounds inhibit γ-aminobutyric acid type-A (GABAA) receptors with similar potency. However, TETS is approximately 100 × more lethal than picrotoxin. Here, we directly compared the toxicokinetics of the two compounds following intraperitoneal administration in mice. Using LC/MS analysis we found that picrotoxinin, the active component of picrotoxin, hydrolyses quickly into picrotoxic acid, has a short in vivo half-life, and is moderately brain penetrant (brain/plasma ratio 0.3). TETS, in contrast, is not metabolized by liver microsomes and persists in the body following intoxication. Using both GC/MS and a TETS-selective immunoassay we found that mice administered TETS at the LD50 of 0.2 mg/kg in the presence of rescue medications exhibited serum levels that remained constant around 1.6 µM for 48 h before falling slowly over the next 10 days. TETS showed a similar persistence in tissues. Whole-cell patch-clamp demonstrated that brain and serum extracts prepared from mice at 2 and 14 days after TETS administration significantly blocked heterologously expressed α2ß3γ2 GABAA-receptors confirming that TETS remains pharmacodynamically active in vivo. This observed persistence may contribute to the long-lasting and recurrent seizures observed following human exposures. We suggest that countermeasures to neutralize TETS or accelerate its elimination should be explored for this highly dangerous threat agent.

5.
Inorg Chem ; 59(3): 1871-1882, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927992

RESUMO

The synthesis, molecular structures, and spectroscopic details of a series of isocyanide and nitrile complexes of the early first-row transition-metal tris(silyl)amides M{N(SiMe3)2}3 (M = Ti, V) are reported. Previously, first-row transition-metal tris(silyl)amides were generally thought to be incapable of forming complexes with Lewis bases due to their excessive steric crowding. However, it is now shown that simple treatment of the base-free trisamides with 2 equiv of an isocyanide or nitrile base at room temperature results in the formation of the trigonal bipyramidal complexes Ti{N(SiMe3)2}3(1-AdNC)2 (1), Ti{N(SiMe3)2}3(CyNC)2 (2), Ti{N(SiMe3)2}3(ButNC)2 (3), Ti{N(SiMe3)2}3(PhCN)2 (4), V{N(SiMe3)2}3(1-AdNC)2 (5), V{N(SiMe3)2}3(CyNC)2 (6), V{N(SiMe3)2}3(ButNC)2 (7), and V{N(SiMe3)2}3(PhCN)2 (8), which incorporate two donor ligands (1-AdNC = 1-adamantyl isocyanide, CyNC = cyclohexyl isocyanide, ButNC = tert-butyl isocyanide, PhCN = benzonitrile). All complexes display a characteristic increase in the frequency of the multiple bonded C-N stretching mode which is observed to be in the range of 2170-2190 cm-1 for the isocyanide complexes 1-3 and 5-7 and at 2250 cm-1 for the nitrile complex 8. This effect was not observed for the titanium nitrile complex 4, suggesting weak binding of the donor to titanium. Paramagnetic 1H NMR studies showed these complexes to have detectable, though extremely broadened, signals attributable to the trimethylsilyl groups of the amide ligands (δ = ca. 2.8 ppm for titanium isocyanide complexes, ca. 4.5-4.7 ppm for vanadium isocyanide complexes). A variable-temperature 1H NMR study showed that in solution these complexes exist as mixtures of the five-coordinate species and a putative four-coordinate species coordinating a single Lewis basic ligand. Electronic spectroscopy indicated that the vanadium complexes 5-8 bind the Lewis bases more strongly than the corresponding titanium complexes, where the spectra of complexes 1-4 are essentially identical to the base-free Ti{N(SiMe3)2}3 at the temperatures and concentrations studied. In contrast to these results, no corresponding complexes were detected for the metal silylamides M{N(SiMe3)2}3 (M = Cr, Mn, Fe, or Co) when treated with the isocyanide or nitrile bases.

6.
J Am Chem Soc ; 142(5): 2233-2237, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31951405

RESUMO

The reaction of the molybdenum-molybdenum triple-bonded dimer (CO)2CpMo≡MoCp(CO)2 (Cp = η5-C5H5) with the triple-bonded dimetallynes AriPr4MMAriPr4 or AriPr6MMAriPr6 (AriPr4 = C6H3-2,6-(C6H3-2,6-Pri2)2, AriPr6 = C6H3-2,6-(C6H2-2,4,6-Pri3)2; M = Ge, Sn, or Pb) under mild conditions (≤80 °C, 1 bar) afforded AriPr4M≡MoCp(CO)2 or AriPr6M≡MoCp(CO)2 in moderate to excellent yields. The reactions represent the first isolable products from a metathesis of two metal-metal triple bonds. Analogous exchange reactions with the single-bonded (CO)3CpMo-MoCp(CO)3 gave ArM̈-MoCp(CO)3 (Ar = AriPr4 or AriPr6; M = Sn or Pb). The products were characterized by NMR (1H, 13C, 119Sn, or 207Pb), electronic, and IR spectroscopy and by X-ray crystallography.

7.
Org Lett ; 21(21): 8765-8770, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31638403

RESUMO

Photoswitches capable of accessing two geometric states are highly desirable, especially if their design is modular and incorporates a pharmacophore tethering site. We describe a redox isomerization strategy for synthesizing p-formylazobenzenes from p-nitrobenzyl alcohol. The resulting azo-aldehydes can be readily converted to photoswitchable compounds with excellent photophysical properties using simple hydrazide click chemistry. As a proof of principle, we synthesized a photoswitchable surfactant enabling the photocontrol of an emulsion with exceptionally high spatiotemporal precision.

8.
Org Lett ; 21(20): 8196-8200, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31573211

RESUMO

We report a scandium-catalyzed [3 + 2] annulation of alkylideneoxindoles with allenylsilanes for the enantioselective formation of cyclopentene-spirooxindoles containing vinylsilanes. Using a Sc(OTf)2/PyBOX/BArF complex, the spiroannulation of allenylsilanes affords products with >94:6 dr and >90:10 er. The effect of the counterion and ligand to control selectivity is discussed. The transformation of the vinylsilane is demonstrated using cross-coupling, epoxidation, and Tamao-Fleming oxidation reactions. A series of competition experiments provide a comparison of nucleophilicity between allyl- and allenylsilanes.

9.
Front Pharmacol ; 10: 972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616290

RESUMO

Calcium-activated K+ channels constitute attractive targets for the treatment of neurological and cardiovascular diseases. To explain why certain 2-aminobenzothiazole/oxazole-type KCa activators (SKAs) are KCa3.1 selective we previously generated homology models of the C-terminal calmodulin-binding domain (CaM-BD) of KCa3.1 and KCa2.3 in complex with CaM using Rosetta modeling software. We here attempted to employ this atomistic level understanding of KCa activator binding to switch selectivity around and design KCa2.2 selective activators as potential anticonvulsants. In this structure-based drug design approach we used RosettaLigand docking and carefully compared the binding poses of various SKA compounds in the KCa2.2 and KCa3.1 CaM-BD/CaM interface pocket. Based on differences between residues in the KCa2.2 and KCa.3.1 models we virtually designed 168 new SKA compounds. The compounds that were predicted to be both potent and KCa2.2 selective were synthesized, and their activity and selectivity tested by manual or automated electrophysiology. However, we failed to identify any KCa2.2 selective compounds. Based on the full-length KCa3.1 structure it was recently demonstrated that the C-terminal crystal dimer was an artefact and suggested that the "real" binding pocket for the KCa activators is located at the S4-S5 linker. We here confirmed this structural hypothesis through mutagenesis and now offer a new, corrected binding site model for the SKA-type KCa channel activators. SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine) is binding in the interface between the CaM N-lobe and the S4-S5 linker where it makes van der Waals contacts with S181 and L185 in the S45A helix of KCa3.1.

10.
Org Lett ; 21(18): 7209-7212, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31486651

RESUMO

The formation of fused pyrazoles via intramolecular 1,3-dipolar cycloadditions of diazo intermediates with pendant alkynes is described. A subsequent thermal [1s, 5s] sigmatropic shift of these pyrazole systems resulted in a ring contraction, forming spirocyclic pyrazoles. The limitations of this rearrangement were explored by changing the substituents on the nonmigrating aromatic ring and by using substrates lacking an aromatic linkage to the propargyl group.

11.
J Am Chem Soc ; 141(40): 15792-15803, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31510741

RESUMO

Water-stable organic mixed valence (MV) compounds have been prepared by the reaction of reduced bis(imino)pyridine ligands (I2P) with the trichloride salts of Al, Ga, and In. The coordination of two tridentate ligands to each ion affords octahedral complexes that are accessible with five ligand charge states: [(I2P0)(I2P-)M]2+, [(I2P-)2M]+, (I2P-)(I2P2-)M, [(I2P2-)2M]-, and [(I2P2-)(I2P3-)M]2-, and for M = Al only, [(I2P3-)2M]3-. In solid-state structures, the anionic members of the redox series are stabilized by the intercalation of Na+ cations within the ligands. The MV members of the redox series, (I2P-)(I2P2-)M and [(I2P2-)(I2P3-)M]2-, show characteristic intervalence transitions, in the near-infrared regions between 6800-7400 and 7800-9000 cm-1, respectively. Cyclic voltammetry (CV), NIR spectroscopic, and X-ray structural studies support the assignment of class II for compounds [(I2P2-)(I2P3-)M]2- and class III for M = Al and Ga in (I2P-)(I2P2-)M. All compounds containing a singly reduced I2P- ligand exhibit a sharp, low-energy transition in the 5100-5600 cm-1 region that corresponds to a π*-π* transition. CV studies demonstrate that the electron-transfer events in each of the redox series, Al, Ga, and In, span 2.2, 1.4, and 1.2 V, respectively.

12.
Angew Chem Int Ed Engl ; 58(48): 17293-17296, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557374

RESUMO

The dye and pigment manufacturing industry is one of the most polluting in the world. Each year, over one million tons of petrochemical colorants are produced globally, the synthesis of which generates a large amount of waste. Naturally occurring, plant-based dyes, on the other hand, are resource intensive to produce (land, water, energy), and are generally less effective as colorants. Between these two extremes would be synthetic dyes that are fully sourced from biomass-derived intermediates. The present work describes the synthesis of such compounds, containing strong chromophores that lead to bright colors in the yellow to red region of the visible spectrum. The study was originally motivated by an early report of an unidentified halomethylfurfural derivative which resulted from hydrolysis in the presence of barium carbonate, now characterized as a butenolide of 5-(hydroxymethyl)furfural (HMF). The method has been generalized for the synthesis of dyes from other biobased platform molecules, and a mechanism is proposed.

13.
Chemistry ; 25(65): 14953-14958, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31448459

RESUMO

The catalytic activity, kinetics, and quantification of H-bonding ability of incompletely condensed polyhedral oligomeric silsesquioxane (POSS) silanols are reported. POSS-triols, a homogeneous model for vicinal silica surface sites, exhibit enhanced H-bonding compared with other silanols and alcohols as quantified using a 31 P NMR probe. Evaluation of a Friedel-Crafts addition reaction shows that phenyl-POSS-triol is active as an H-bond donor catalyst whereas other POSS silanols studied are not. An in-depth kinetic study (using RPKA and VTNA) highlights the concentration-dependent H-bonding behavior of POSS-triols, which is attributed to intermolecular association forming an off-cycle dimeric species. Binding constants provide additional support for reduced H-bond ability at higher concentrations, which is attributed to competitive association. POSS-triol self-association disrupts H-bond donor abilities relevant for catalysis by reducing the concentration of active monomeric catalyst.

14.
Chem Commun (Camb) ; 55(69): 10285-10287, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31396611

RESUMO

Simple reactions of their terphenyl lead bromide precursors with DIBAL-H in diethyl ether solution at ca. -78 °C leads to the isolation of the hydrides {Pb(µ-H)ArPri4}2 (ArPri4 = C6H3-2,6-(C6H3-2,6-Pri2)2) (1) and {Pb(µ-H)ArMe6}2 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) (2) in good yield (60-80%). The isolated solids are stable at up to 5 °C for several weeks but are thermally labile in solution. Hydride 1 decomposes to the diplumbyne ArPri4PbPbArPri4, while 2 decomposes to the plumbylene Pb(ArMe6)2. The decomposition of 1 was determined to be zero order with a rate constant of ca. 2.0 × 10-5 M min-1 at 298 K.

15.
J Am Chem Soc ; 141(36): 14370-14383, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390863

RESUMO

A series of formally triply bonded diplumbyne analogues of alkynes of the general formula ArPbPbAr (Ar = terphenyl ligand with different steric properties) was synthesized by two routes. All diplumbyne products were synthesized by a simple reduction of the corresponding Pb(II) halide precursor ArPb(Br) by DIBAL-H with yields in the range 8-48%. For one of the diplumbynes ArPri4PbPbArPri4 (ArPri4 = C6H3-2,6-(C6H3-2,6-Pri2)2) it was shown that reduction of ArPri4Pb(Br) using a magnesium(I) beta-diketiminate afforded a much improved yield in comparison (29 vs 8%) to that obtained by reduction with DIBAL-H. The more sterically crowded diplumbyne ArPri8PbPbArPri8 (ArPri8 = C6H-3,5-Pri2-2,6-(C6H2-2,4,6-Pri3)2) displayed a shortened Pb-Pb bond with a length of 3.0382(5) Å and wide Pb-Pb-C angles of 114.73(7)° and 116.02(6)° consistent with multiple-bond character with a bond order of up to 1.5. The others displayed longer metal-metal distances and narrower Pb-Pb-C angles that were consistent with a lower bond order that approached one. Computational studies of the diplumbynes yielded detailed insight of the unusual bonding and explained their similar electronic spectra arising from the flexibility of the C-Pb-Pb-C core in solution. Furthermore, the importance of London dispersion interactions for the stabilization of the diplumbynes was demonstrated.

16.
Org Lett ; 21(13): 5073-5077, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31247788

RESUMO

The organocatalytic synthesis of densely substituted mono- and bis-γ-lactams involving the Mukaiyama Mannich addition of 2,5-bis(trimethylsilyloxy)furan to imines is described. Use of a ditoluenesulfonylimide catalyst produces γ-lactams from monoaddition, whereas a more acidic catalyst (triflic acid) produces fused bis-lactams from double addition. Optimized organocatalytic conditions allow for the selective synthesis of either desired core as well as the one-pot, multicomponent assembly of the trisubstituted monolactams from aldehydes, amines, and bis-trimethylsilyloxyfuran. An examination of chiral acids found these organocatalysts to be highly active and diastereoselective in the monoaddition reaction, albeit with no enantioselectivity.

17.
Chemistry ; 25(52): 12214-12220, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31226239

RESUMO

Diastereoselective Lewis acid-mediated additions of nucleophilic alkenes to N-sulfonyl imines are reported. The canonical polar Felkin-Anh model describing additions to carbonyls does not adequately describe analogous additions to N-sulfonyl imines. Herein, we describe the development of conditions to produce both syn and anti products with high diastereoselectivity and good yields. A stereoelectronic model consistent with experimental outcomes is also proposed.

18.
Inorg Chem ; 58(13): 8793-8799, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187985

RESUMO

The synthesis and spectroscopic, structural, and magnetic characterization of the quasi-linear metal(II) bis(amides) M{N(SiPr i3)Dipp}2 [Dipp = C6H3-2,6-Pr i3; M = Fe (1), Co (2), or Zn (3)] are described. The magnetic data demonstrate the impact of metal ligand π-interactions on the magnetic properties of these two-coordinate transition metal amides. Disproportionation of the copper(I) amide species featuring the ligand -N(SiPr i3)Dipp resulted in the decomposition product [(Pr i3Si)N( c-C6H2-2,6-Pr i2)]2 (4). The electron paramagnetic resonance spectrum of the unstable two-coordinate Cu{N(SiPr i3)Dipp}2 displays significantly less Cu-N bond covalency than the stable two-coordinate copper(II) species Cu{N(SiMe3)Dipp}2. The testing of -N(SiPr i3)Dipp and a range of other, related bulky amide ligands with their copper derivatives highlights the peculiar combination of steric and electronic properties of the Wigley ligand -N(SiMe3)Dipp that enable it to stabilize the unique two-coordinate copper(II) complex Cu{N(SiMe3)Dipp}2.

19.
Inorg Chem ; 58(9): 6095-6101, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950608

RESUMO

During the preparation of V{N(SiMe3)2}3 (1), a discrepancy between the violet color that we observed and the brown color previously reported prompted further investigation of this compound. As a result, a new spectroscopic study and a full structural characterization are presented. The synthesis, spectroscopy, and structural characteristics of its reduced salt, [K(18-crown-6)(Et2O)2][V{N(SiMe3)2}3] (2), and its chromium congener, [K(18-crown-6)(Et2O)2][Cr{N(SiMe3)2}3] (3), are also described. The 1H NMR spectra for 1-3 and Cr{N(SiMe3)2}3 as well as their cyclic voltammograms are also reported.

20.
Org Lett ; 21(6): 1574-1577, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30807191

RESUMO

Readily prepared cis-ß-(α',α'-dimethyl)-4'-methindolylstyrenes undergo acid-catalyzed intramolecular hydroindolation to afford tetrahydrobenzo[ cd]indoles. Our experimental and computational investigations suggest that dispersive interactions between the indole and styrene preorganize substrates such that 6-membered ring formation is preferred, apparently via concerted protonation and C-C bond formation. When dispersion is attenuated (by a substituent or heteroatom), regioselectivity erodes and competing oligomerization predominates for cis substrates. Similarly, all trans-configured substrates that we evaluated failed to cyclize efficiently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA