Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32592610

RESUMO

Tendon healing still represents a challenge for clinicians because it is slow and incomplete. The most injured is the Achilles tendon and surgery is the therapeutic strategy often adopted because it provides a quicker functional recovery. Peritendinous adhesions are the main complication of surgery with hyperplasia and chemotaxis of fibroblasts. A biomaterial that blocks fibroblast migration, without interfering with the passage of cytokines and growth factors, might be useful. The present study evaluated the biocompatibility of a new Type I collagen-based scaffold (ElastiCo®) and its ability to promote Achilles tendon healing, inhibiting adhesion formation. After verifying in vitro biocompatibility, physical and mechanical properties of the scaffold, an in vivo study was performed in 28 rats, operated to induce an acute lesion in both Achilles tendons. One tendon was treated with the suture only and the controlateral one with suture wrapped with ElastiCo® film. After 8 and 16 weeks, it was observed that ElastiCo® reduced internal and external peritendinous adhesions and Collagen III content and increased Collagen I. Elastic modulus increased with both treatments over time. Current results highlighted the clinical translationality of ElastiCo® that could improve the quality of life in patients affected by Achilles tendon lesions surgically treated.

2.
Platelets ; : 1-6, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32397915

RESUMO

Coronavirus disease 2019 (COVID-19) is a new infectious disease that currently lacks standardized and established laboratory markers to evaluate its severity. In COVID-19 patients, the number of platelets (PLTs) and dynamic changes of PLT-related parameters are currently a concern. The present paper discusses the potential link between PLT parameters and COVID-19. Several studies have identified a link between severe COVID-19 patients and specific coagulation index, in particular, high D-dimer level, prolonged prothrombin time, and low PLT count. These alterations reflect the hypercoagulable state present in severe COVID-19 patients, which could promote microthrombosis in the lungs, as well as in other organs. Further information and more advanced hematological parameters related to PLTs are needed to better estimate this link, also considering COVID-19 patients at different disease stages and stratified in different cohorts based on preexisting co-morbidity, age, and gender. Increasing the understanding of PLT functions in COVID-19 will undoubtedly improve our knowledge on disease pathogenesis, clinical management, and therapeutic options, but could also lead to the development of more precise therapeutic strategies for COVID-19 patients.

3.
Injury ; 51(7): 1457-1467, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32430197

RESUMO

INTRODUCTION: Large bone defects in long bone are not able to repair themselves and require grafts. Although autograft is the gold standard, it is associated with some disadvantages. Consequently, the application of tissue engineering (TE) techniques help with the use of allogenic biological and artificial scaffolds, cells and growth factors (GFs). Following 3Rs and in vitro testing strategies, animal models are required in preclinical in vivo studies to evaluate the therapeutic effects of the most promising TE techniques. MATERIALS AND METHODS: A systematic review was performed from 2000 to 2019 to evaluate bone regeneration sheep metatarsus defects. RESULTS: Eleven in vivo studies on sheep metatarsus defect were retrieved. The mid-diaphysis of metatarsus was the region most employed to perform critical size defects. Natural, synthetic and hybrid scaffolds were implanted, combined with bone marrow mesenchymal stem cells (BMSCs), GFs such as osteogenic protein 1 (OP1) and platelet rich plasma (PRP). The maximum follow-up period was 4 and 6 months in which radiography, histology, histomorphometry, computed tomography (CT) and biomechanics were performed to evaluate the healing status. CONCLUSIONS: the sheep metatarsus defect model seems to be a suitable environment with a good marriage of biological and biomechanical properties. Defects of 3 cm are treated with natural scaffolds (homologous graft or allografts), those of 2.5 cm with natural, synthetic or composite scaffolds, while little defects (0.5 × 0.5 cm) with composite scaffolds. No difference in results is found regardless of the defect size.

4.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456298

RESUMO

Osteoarthritis (OA) is a highly prevalent joint disease that primarily affects about 10% of the world's population over 60 years old. The purpose of this study is to systematically review the preclinical studies regarding sex differences in OA, with particular attention to the molecular aspect and gene expression, but also to the histopathological aspects. Three databases (PubMed, Scopus, and Web of Knowledge) were screened for eligible studies. In vitro and in vivo papers written in English, published in the last 11 years (2009-2020) were eligible. Participants were preclinical studies, including cell cultures and animal models of OA, evaluating sex differences. Independent extraction of articles and quality assessments were performed by two authors using predefined data fields and specific tools (Animals in Research Reporting In Vivo Experiments (ARRIVE) guideline and Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool). Twenty-three studies were included in the review: 4 in vitro studies, 18 in vivo studies, and 1 both in vitro and in vivo study. From in vitro works, sex differences were found in the gene expression of inflammatory molecules, hormonal receptors, and in responsiveness to hormonal stimulation. In vivo research showed a great heterogeneity of animal models mainly focused on the histopathological aspects rather than on the analysis of sex-related molecular mechanisms. This review highlights that many gaps in knowledge still exist; improvementsin the selection and reporting of animal models, the use of advanced in vitro models, and multiomics analyses might contribute to developing a personalized gender-based medicine.

5.
J Biomed Mater Res A ; 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32297695

RESUMO

Musculoskeletal diseases involving loss of tissue usually require management with bone grafts, among which autografts are still the gold standard. To overcome autograft disadvantages, the development of new scaffolds is constantly increasing, as well as the number of in vivo studies evaluating their osteoinductivity in ectopic sites. The aim of the present systematic review is to evaluate the last 10 years of osteoinduction in vivo studies. The review is focused on: (a) which type of animal model is most suitable for osteoinduction evaluation; (b) what are the most used types of scaffolds; (c) what kind of post-explant evaluation is most used. Through three websites (www.pubmed.com, www.webofknowledge.com and www.embase.com), 77 in vivo studies were included. Fifty-eight studies were conducted in small animal models (rodents) and 19 in animals of medium or large size (rabbits, dogs, goats, sheep, and minipigs). Despite the difficulty in establishing the most suitable animal model for osteoinductivity studies, small animals (in particular mice) are the most utilized. Intramuscular implantation is more frequent than subcutis, especially in large animals, and synthetic scaffolds (especially CaP ceramics) are preferred than natural ones, also in combination with cells and growth factors. Paraffin histology and histomorphometric evaluations are usually employed for postimplantation analyses.

6.
Int J Pharm ; 582: 119322, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32298742

RESUMO

Infection and resulting bone defects caused by Staphylococcus aureus is one of the major issues in orthopaedic surgeries. Vancomycin hydrochloride (VaH) is largely used to manage these events. Here, a human derived bone paste supplemented with biopolymer microcarriers for VaH sustained delivery to merge osteoinductive and antimicrobial actions is described. In detail, different emulsion formulations were tested to fabricate micro-carriers of poly-lactic-co-glycolic acid (PLGA) and hydroxyapatite (HA) by a proprietary technology (named Supercritical Emulsion Extraction). These carriers (mean size 827 ± 68 µm; loading 47 mgVaH/gPLGA) were assembled with human demineralized bone matrix (DBM) to obtain an antimicrobial bone paste system (250 mg/0.5 cm3 w/v, carrier/DBM). Release profiles in PBS indicated a daily drug average release of about 4 µg/mL over two weeks. This concentration was close to the minimum inhibitory concentration and able to effectively inhibit the S. aureus growth in our experimental sets. Carriers cytotoxicity tests showed absence of adverse effects on cell viability at the concentrations used for paste assembly. This approach points toward the potential of the DBM-carrier-antibiotic system in hampering the bacterial growth with accurately controlled antibiotic release and opens perspectives on functional bone paste with PLGA carriers for the controlled release of bioactive molecules.

7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143494

RESUMO

Background: With the increase in aging population, the rising prevalence of osteoporosis (OP) has become an important medical issue. Accumulating evidence showed a close relationship between OP and hematopoiesis and emerging proofs revealed that platelets (PLTs), unique blood elements, rich in growth factors (GFs), play a critical role in bone remodeling. The aim of this review was to evaluate how PLT features, size, volume, bioactive GFs released, existing GFs in PLTs and PLT derivatives change and behave during OP. Methods: A systematic search was carried out in PubMed, Scopus, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases to identify preclinical and clinical studies in the last 10 years on PLT function/features and growth factor in PLTs and on PLT derivatives during OP. The methodological quality of included studies was assessed by QUIPS tool for assessing risk of bias in the clinical studies and by the SYRCLE tool for assessing risk of bias in animal studies. Results: In the initial search, 2761 studies were obtained, only 47 articles were submitted to complete reading, and 23 articles were selected for the analysis, 13 on PLT function/features and growth factor in PLTs and 10 on PLT derivatives. Risk of bias of almost all animal studies was high, while the in the clinical studies risk of bias was prevalently moderate/low for the most of the studies. The majority of the evaluated studies highlighted a positive correlation between PLT size/volume and bone mineralization and an improvement in bone regeneration ability by using PLTs bioactive GFs and PLT derivatives. Conclusions: The application of PLT features as OP markers and of PLT-derived compounds as therapeutic approach to promote bone healing during OP need to be further confirmed to provide clear evidence for the real efficacy of these interventions and to contribute to the clinical translation.

8.
J Surg Res ; 252: 1-8, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203731

RESUMO

BACKGROUND: Surgical repair of critical-sized bone defects still remains a big challenge in orthopedic surgery. Biological enhancement, such as growth factors or cells, can stimulate a better outcome in bone regeneration driven by well-established treatments such as allogenic bone graft. However, despite the surgical options available, correct healing can be slowed down or compromised by insufficient vascular supply to the injured site. MATERIALS AND METHODS: In this pilot study, critical size bone defects in rabbit radius were treated with allograft bone, in combination with vascular bundle and autologous bone marrow concentrate seeded onto a commercial collagen scaffold. Microtomographical, histological and immunohistochemical assessments were performed to evaluate allograft integration and bone regeneration. RESULTS: Results showed that the surgical deviation of vascular bundle in the bone graft, regardless from the addition of bone marrow concentrate, promote the onset of healing process at short experimental times (8 wk) in comparison with the other groups, enhancing graft integration. CONCLUSION: The surgical procedure tested stimulates bone healing at early times, preserving native bone architecture, and can be easily combined with biological adjuvant.

9.
Arch Biochem Biophys ; 685: 108333, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32194044

RESUMO

This study summarizes the available evidence from systematic reviews on the in vitro effects of photobiomodulation on the proliferation and differentiation of human bone and stromal cells by appraising their methodological quality. Improvements for future studies are also highlighted, with particular emphasis on in vitro protocols and cell-related characteristics. Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included. There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor. A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion. These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research.

10.
J Cell Physiol ; 235(5): 4981, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048736
11.
Int Orthop ; 44(4): 779-793, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32025798

RESUMO

PURPOSE: One of the major risk factors for OA is meniscectomy (Mx) that causes a rapid and progressive OA. Mx has been employed in various animal models, especially in large ones, to study preclinical safety and strategy effectiveness to counteract OA. The aim of the present study is to review in vivo studies, performed in sheep and published in the last ten years. METHODS: The search strategy was performed in three websites: www.scopus.com, www.pubmed.com, and www.webofknowledge.com, using "Meniscectomy and osteoarthritis in sheep" keywords. RESULTS: The 25 included studies performed unilateral total medial Mx (MMx), unilateral partial MMx, bilateral MMx, unilateral total lateral Mx (LMx), unilateral partial LMx, and bilateral LMx and MMx combined with anterior cruciate ligament transaction. The most frequently performed is the unilateral total MMx that increases changes in cartilage and subchondral bone more than the other techniques. Gross evaluations, histology, radiography, and biochemical tests are used to assess the degree of OA. The most widely tested treatments are related to scaffolds with or without mesenchymal stem cells. CONCLUSION: OA therapeutic strategies require the use of large animal models due to similarities with human joint anatomy. A protocol for future in vivo studies on post-traumatic OA is clarified.

12.
J Cell Physiol ; 235(6): 5413-5428, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31904116

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/ß-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, ß-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/ß-catenin pathway through ICG-001, a CBP/ß-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/ß-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/ß-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.

13.
J Biomed Mater Res B Appl Biomater ; 108(3): 600-611, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31095882

RESUMO

Long bone defects still represent a major clinical challenge in orthopedics, with the inherent loss of function considerably impairing the quality of life of the affected patients. Thus, the purpose of this study was to assess the safety and potential of bone regeneration offered by a load-bearing scaffold characterized by unique hierarchical architecture and high strength, with active surface facilitating new bone penetration and osseointegration in critical size bone defects. The results of this study showed the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of new wood-derived bone scaffolds, further improved by surface functionalization, with good biological and mechanical properties leading to successful treatment of critical size bone defects in the sheep model. Future studies are needed to evaluate if these scaffolds prototypes, as either biomaterial alone or in combination with augmentation strategies, may represent an optimal solution to enhance bone regeneration in humans.

14.
J Biomed Mater Res B Appl Biomater ; 108(5): 1826-1843, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31785081

RESUMO

Tendon repair is a complex process due to the low tenocyte density, metabolism, and vascularization. Tears of rotator cuff (RCT) and Achilles tendons ruptures have a major impact on healthcare costs and quality of life of patients. Scaffolds are used to improve the healing rate after surgery and long-term results. A systematic search was carried out to identify the different types of scaffolds used during RCT and Achilles tendon repair surgery in the last 10 years. A higher number of clinical studies were reported on RCT ruptures. Biological scaffolds were used more than synthetic ones, for both rotator cuff and Achilles tendons. Moreover, platelet-rich plasma (PRP)-based scaffolds were the most widely used in RCT. A different type of synthetic scaffold was used in each of the five studies found. Biological scaffolds either provide variable results, in particular PRP-based ones, or poor results, such as bovine equine pericardium. All the synthetic scaffolds demonstrated a significant increase in clinical and functional scores in biomechanics, and a significant decrease in pain and re-tear rate in comparison to conventional surgery. Despite the limited number of studies, further investigation in the clinical use of synthetic scaffolds should be carried out.

15.
Clin J Sport Med ; 30(1): 1-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31855906

RESUMO

OBJECTIVE: Pain and range of motion loss are the main clinical features of osteoarthritis (OA). Hyaluronic acid (HA) is one of the infiltrative therapies for OA treatment; however, its effectiveness is a matter of an ongoing debate in clinical practice. Polynucleotides (PNs), a DNA-derived macromolecule with natural origin and trophic activity, were found to favor cell growth and collagen production, in preclinical and clinical studies regarding cartilage regeneration. This study aimed at evaluating whether injection of PNs, in combination with HA [PNs associated with HA (PNHA)], can ameliorate pain and function of knees affected by OA, more than HA alone. DESIGN: A randomized, double-blind, controlled clinical trial. PATIENTS: The study enrolled 100 patients, then randomized to receive PNHA or HA alone (3 weekly knee I.A. injections). INTERVENTIONS AND MAIN OUTCOME MEASURES: Pain reduction, decrease of proinflammatory synovial fluid (SF) factors, and improvement in knee function were evaluated by Knee Society Score and WOMAC scores, after 2, 6, and 12 months and by biochemical and immunoenzymatic analyses of SF at the end of the treatment. RESULTS: Knee Society Score total score and pain item significantly ameliorated in both groups, showing better results in PNHA- than in the HA-treated group. A significant reduction in the WOMAC score was observed over time for both groups. No significant adverse events were reported in either group. CONCLUSIONS: These findings suggest that I.A. injection of PNs, in combination with HA, is more effective in improving knee function and pain, in a joint affected by OA, compared with HA alone.

16.
Cells ; 8(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771093

RESUMO

Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (i) modulator of YAP/TAZ expression and (ii) a regulator of EGFR signaling during osteoblast commitments. Starting from the observation on hMSCs and primary osteoblast cell lines (Nh-Ost) in which EMT genes and miR-33a displayed a specific expression, we performed a gain and loss of function study with miR-33a-5p and 3p on hMSCs cells and Nh-Ost. After 24 h of transfections, we evaluated the modulation of EMT and osteoblast genes expression by qRT-PCR, Western blot, and Osteoimage assays. Through bioinformatic analysis, we identified YAP as the putative target of miR-33a-3p. Its role was investigated by gain and loss of function studies with miR-33a-3p on hMSCs; qRT-PCR and Western blot analyses were also carried out. Finally, the possible role of EGFR signaling in YAP/TAZ modulation by miR-33a-3p expression was evaluated. Human MSCs were treated with EGF-2 and EGFR inhibitor for different time points, and qRT-PCR and Western blot analyses were performed. The above-mentioned methods revealed a balance between miR-33a-5p and miR-33a-3p expression during hMSCs osteoblast differentiation. The human MSCs phenotype was maintained by miR-33a-5p, while the maintenance of the osteoblast phenotype in the Nh-Ost cell model was permitted by miR-33a-3p expression, which regulated YAP/TAZ through the modulation of EGFR signaling. The inhibition of EGFR blocked the effects of miR-33a-3p on YAP/TAZ modulation, favoring the maintenance of hMSCs in a committed phenotype. A new possible personalized therapeutic approach to bone regeneration was discussed, which might be mediated by customizing delivery of miR-33a in simultaneously targeting EGFR and YAP signaling with combined use of drugs.

17.
Sci Rep ; 9(1): 13603, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537813

RESUMO

Osteoarthritis (OA), the most prevalent degenerative joint disease, still lacks a true disease-modifying therapy. The involvement of the NF-κB pathway and its upstream activating kinases in OA pathogenesis has been recognized for many years. The ability of the N-acetyl phenylalanine glucosamine derivative (NAPA) to increase anabolism and reduce catabolism via inhibition of IKKα kinase has been previously observed in vitro and in vivo. The present study aims to confirm the chondroprotective effects of NAPA in an in vitro model of joint OA established with primary cells, respecting both the crosstalk between chondrocytes and synoviocytes and their phenotypes. This model satisfactorily reproduces some features of the previously investigated DMM model, such as the prominent induction of ADAMTS-5 upon inflammatory stimulation. Both gene and protein expression analysis indicated the ability of NAPA to counteract key cartilage catabolic enzymes (ADAMTS-5) and effectors (MCP-1). Molecular analysis showed the ability of NAPA to reduce IKKα nuclear translocation and H3Ser10 phosphorylation, thus inhibiting IKKα transactivation of NF-κB signalling, a pivotal step in the NF-κB-dependent gene expression of some of its targets. In conclusion, our data confirm that NAPA could truly act as a disease-modifying drug in OA.

18.
Carcinogenesis ; 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31294446

RESUMO

Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodelling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the miRNA cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and Huvec cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment, also by a specific packaging of miRNAs.

19.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146351

RESUMO

Evaluating cell migration after cell-based treatment is important for several disorders, including osteoarthritis (OA), as it might influence the clinical outcome. This research explores migrating expanded-adipose stromal cells (ASCs) and adipose niches after enzymatic and mechanical processes. Bilateral anterior cruciate ligament transection induced a mild grade of OA at eight weeks in adult male New Zealand rabbits. ASCs, enzymatic stromal vascular fraction (SVF), and micro fragmented adipose tissue (MFAT) were intra-articularly injected in the knee joint. Assessments of cell viability and expression of specific markers, including CD-163 wound-healing macrophages, were done. Cell migration was explored through labelling with PKH26 dye at 7 and 30 days alongside co-localization analyses for CD-146. All cells showed good viability and high percentages of CD-90 and CD-146. CD-163 was significantly higher in MFAT compared to SVF. Distinct migratory potential and time-dependent effects were observed among cell-based treatments. At day 7, both ASCs and SVF migrated towards synovium, whereas for MFAT versus cartilage, a different migration pattern was noticed at day 30. The long-term distinct cell migration of ASCs, SVF, and MFAT open interesting clinical insights on their potential use for OA treatment. Moreover, the highest expression of CD-163 in MFAT, rather than SVF, might have an important role in directly mediating cartilage tissue repair responses.


Assuntos
Adipócitos/transplante , Osteoartrite do Joelho/terapia , Regeneração , Transplante de Células-Tronco/métodos , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Movimento Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Cultura Primária de Células/métodos , Coelhos
20.
Biomed Res Int ; 2019: 6082304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236409

RESUMO

MRI guided Focused Ultrasound (MRgFUS) has shown to be effective therapeutic modality for non-invasive clinical interventions in ablating of uterine fibroids, in bone metastasis palliative treatments, and in breast, liver, and prostate cancer ablation. MRgFUS combines high intensity focused ultrasound (HIFU) with MRI images for treatment planning and real time thermometry monitoring, thus enabling non-invasive ablation of tumor tissue. Although in the literature there are several studies on the Ultrasound (US) effects on cell in culture, there is no systematic evidence of the biological effect of Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS) treatment on osteosarcoma cells, especially in lower dose regions, where tissues receive sub-lethal acoustic power. The effect of MRgFUS treatment at different levels of acoustic intensity (15.5-49 W/cm2) was investigated on Mg-63 and Saos-2 cell lines to evaluate the impact of the dissipation of acoustic energy delivered outside the focal area, in terms of cell viability and osteogenic differentiation at 24 h, 7 days, and 14 days after treatment. Results suggested that the attenuation of FUS acoustic intensities from the focal area (higher intensities) to the "far field" (lower intensities) zones might determine different osteosarcoma cell responses, which range from decrease of cell proliferation rates (from 49 W/cm2 to 38.9 W/cm2) to the selection of a subpopulation of heterogeneous and immature living cells (from 31.1 W/cm2 to 15.5 W/cm2), which can clearly preserve bone tumor cells.


Assuntos
Neoplasias Ósseas/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Osteossarcoma/terapia , Termometria/métodos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Imagem por Ressonância Magnética , Osteogênese/efeitos da radiação , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Imagens de Fantasmas , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA