Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Genesis ; 59(11): e23459, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34713546

RESUMO

Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.

2.
Am J Med Genet A ; 185(10): 3028-3041, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355505

RESUMO

Bladder exstrophy (BE) is a rare, lower ventral midline defect with the bladder and part of the urethra exposed. The etiology of BE is unknown but thought to be influenced by genetic variation with more recent studies suggesting a role for rare variants. As such, we conducted paired-end exome sequencing in 26 child/mother/father trios. Three children had rare (allele frequency ≤ 0.0001 in several public databases) inherited variants in TSPAN4, one with a loss-of-function variant and two with missense variants. Two children had loss-of-function variants in TUBE1. Four children had rare missense or nonsense variants (one per child) in WNT3, CRKL, MYH9, or LZTR1, genes previously associated with BE. We detected 17 de novo missense variants in 13 children and three de novo loss-of-function variants (AKR1C2, PRRX1, PPM1D) in three children (one per child). We also detected rare compound heterozygous loss-of-function variants in PLCH2 and CLEC4M and rare inherited missense or loss-of-function variants in additional genes applying autosomal recessive (three genes) and X-linked recessive inheritance models (13 genes). Variants in two genes identified may implicate disruption in cell migration (TUBE1) and adhesion (TSPAN4) processes, mechanisms proposed for BE, and provide additional evidence for rare variants in the development of this defect.

3.
Front Cell Dev Biol ; 9: 654467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959609

RESUMO

Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.

4.
Front Genet ; 12: 659612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040637

RESUMO

Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.

5.
FASEB J ; 35(4): e21545, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33729606

RESUMO

The neural tube is the first critically important structure that develops in the embryo. It serves as the primordium of the central nervous system; therefore, the proper formation of the neural tube is essential to the developing organism. Neural tube defects (NTDs) are severe congenital defects caused by failed neural tube closure during early embryogenesis. The pathogenesis of NTDs is complicated and still not fully understood even after decades of research. While it is an ethically impossible proposition to investigate the in vivo formation process of the neural tube in human embryos, a newly developed technology involving the creation of neural tube organoids serves as an excellent model system with which to study human neural tube formation and the occurrence of NTDs. Herein we reviewed the recent literature on the process of neural tube formation, the progress of NTDs investigations, and particularly the exciting potential to use neural tube organoids to model the cellular and molecular mechanisms underlying the etiology of NTDs.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Embrião de Mamíferos/metabolismo , Defeitos do Tubo Neural/etiologia , Tubo Neural/metabolismo , Organoides/patologia , Animais , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Humanos , Tubo Neural/patologia , Defeitos do Tubo Neural/metabolismo , Organoides/crescimento & desenvolvimento
6.
Genet Med ; 23(7): 1211-1218, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33686259

RESUMO

PURPOSE: Next-generation sequencing has implicated some risk variants for human spina bifida (SB), but the genome-wide contribution of structural variation to this complex genetic disorder remains largely unknown. We examined copy-number variant (CNV) participation in the genetic architecture underlying SB risk. METHODS: A high-confidence ensemble approach to genome sequences (GS) was benchmarked and employed for systematic detection of common and rare CNVs in two separate ancestry-matched SB case-control cohorts. RESULTS: SB cases were enriched with exon disruptive rare CNVs, 44% of which were under 10 kb, in both ancestral populations (P = 6.75 × 10-7; P = 7.59 × 10-4). Genes containing these disruptive CNVs fall into molecular pathways, supporting a role for these genes in SB. Our results expand the catalog of variants and genes with potential contribution to genetic and gene-environment interactions that interfere with neurulation, useful for further functional characterization. CONCLUSION: This study underscores the need for genome-wide investigation and extends our previous threshold model of exonic, single-nucleotide variation toward human SB risk to include structural variation. Since GS data afford detection of CNVs with greater resolution than microarray methods, our results have important implications toward a more comprehensive understanding of the genetic risk and mechanisms underlying neural tube defect pathogenesis.


Assuntos
Variações do Número de Cópias de DNA , Disrafismo Espinal , Estudos de Casos e Controles , Variações do Número de Cópias de DNA/genética , Genoma , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Disrafismo Espinal/genética
7.
PLoS Genet ; 17(3): e1009413, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684136

RESUMO

Previous research on risk factors for obstructive heart defects (OHDs) focused on maternal and infant genetic variants, prenatal environmental exposures, and their potential interaction effects. Less is known about the role of paternal genetic variants or environmental exposures and risk of OHDs. We examined parent-of-origin effects in transmission of alleles in the folate, homocysteine, or transsulfuration pathway genes on OHD occurrence in offspring. We used data on 569 families of liveborn infants with OHDs born between October 1997 and August 2008 from the National Birth Defects Prevention Study to conduct a family-based case-only study. Maternal, paternal, and infant DNA were genotyped using an Illumina Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks (RR), 95% confidence interval (CI), and likelihood ratio tests from log-linear models were used to estimate the parent-of-origin effect of 877 SNPs in 60 candidate genes in the folate, homocysteine, and transsulfuration pathways on the risk of OHDs. Bonferroni correction was applied for multiple testing. We identified 3 SNPs in the transsulfuration pathway and 1 SNP in the folate pathway that were statistically significant after Bonferroni correction. Among infants who inherited paternally-derived copies of the G allele for rs6812588 in the RFC1 gene, the G allele for rs1762430 in the MGMT gene, and the A allele for rs9296695 and rs4712023 in the GSTA3 gene, RRs for OHD were 0.11 (95% CI: 0.04, 0.29, P = 9.16x10-7), 0.30 (95% CI: 0.17, 0.53, P = 9.80x10-6), 0.34 (95% CI: 0.20, 0.57, P = 2.28x10-5), and 0.34 (95% CI: 0.20, 0.58, P = 3.77x10-5), respectively, compared to infants who inherited maternally-derived copies of the same alleles. We observed statistically significant decreased risk of OHDs among infants who inherited paternal gene variants involved in folate and transsulfuration pathways.


Assuntos
Predisposição Genética para Doença , Variação Genética , Cardiopatias Congênitas/genética , Padrões de Herança , Adulto , Alelos , Cardiomiopatia Hipertrófica Familiar/genética , Mapeamento Cromossômico , Feminino , Genótipo , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Medição de Risco , Adulto Jovem
8.
Front Cell Dev Biol ; 9: 641831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748132

RESUMO

Background: Neural tube defects (NTDs) are among the most common and severe congenital defects in humans. Their genetic etiology is complex and remains poorly understood. The Mediator complex (MED) plays a vital role in neural tube development in animal models. However, no studies have yet examined the role of its human homolog in the etiology of NTDs. Methods: In this study, 48 pairs of neural lesion site and umbilical cord tissues from NTD and 21 case-parent trios were involved in screening for NTD-related somatic and germline de novo variants. A series of functional cell assays were performed. We generated a Med12 p.Arg1784Cys knock-in mouse using CRISPR/Cas9 technology to validate the human findings. Results: One somatic variant, MED12 p.Arg1782Cys, was identified in the lesion site tissue from an NTD fetus. This variant was absent in any other normal tissue from different germ layers of the same case. In 21 case-parent trios, one de novo stop-gain variant, MED13L p.Arg1760∗, was identified. Cellular functional studies showed that MED12 p.Arg1782Cys decreased MED12 protein level and affected the regulation of MED12 on the canonical-WNT signaling pathway. The Med12 p.Arg1784Cys knock-in mouse exhibited exencephaly and spina bifida. Conclusion: These findings provide strong evidence that functional variants of MED genes are associated with the etiology of some NTDs. We demonstrated a potentially important role for somatic variants in the occurrence of NTDs. Our study is the first study in which an NTD-related variant identified in humans was validated in mice using CRISPR/Cas9 technology.

10.
Epigenetics ; : 1-14, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33491544

RESUMO

Neural tube defects (NTDs) are a group of common and severe congenital malformations. The PI3K-AKT signalling pathway plays a crucial role in the neural tube development. There is limited evidence concerning any possible association between aberrant methylation in PI3K-AKT signalling pathway genes and NTDs. Therefore, we aimed to investigate potential associations between aberrant methylation of PI3K-AKT pathway genes and NTDs. Methylation studies of PI3K-AKT pathway genes utilizing microarray genome-methylation data derived from neural tissues of ten NTD cases and eight non-malformed controls were performed. Targeted DNA methylation analysis was subsequently performed in an independent cohort of 73 NTD cases and 32 controls to validate the methylation levels of identified genes. siRNAs were used to pull-down the target genes in human embryonic stem cells (hESCs) to examine the effects of the aberrant expression of target genes on neural cells. As a result, 321 differentially hypermethylated CpG sites in the promoter regions of 30 PI3K-AKT pathway genes were identified in the microarray data. In target methylation analysis, CHRM1, FGF19, and ITGA7 were confirmed to be significantly hypermethylated in NTD cases and were associated with increased risk for NTDs. The down-regulation of FGF19, CHRM1, and ITGA7 impaired the formation of rosette-like cell aggregates. The down-regulation of those three genes affected the expression of PAX6, SOX2 and MAP2, implying their influence on the differentiation of neural cells. This study for the first time reported that hypermethylation of PI3K-AKT pathway genes such as CHRM1, FGF19, and ITGA7 is associated with human NTDs.

12.
Am J Hypertens ; 34(1): 82-91, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710738

RESUMO

BACKGROUND: Maternal hypertension has been associated with congenital heart defect occurrence in several studies. We assessed whether maternal genotypes associated with this condition were also associated with congenital heart defect occurrence. METHODS: We used data from the National Birth Defects Prevention Study to identify non-Hispanic white (NHW) and Hispanic women with (cases) and without (controls) a pregnancy in which a select simple, isolated heart defect was present between 1999 and 2011. We genotyped 29 hypertension-related single nucleotide polymorphisms (SNPs). We conducted logistic regression analyses separately by race/ethnicity to assess the relationship between the presence of any congenital heart defect and each SNP and an overall blood pressure genetic risk score (GRS). All analyses were then repeated to assess 4 separate congenital heart defect subtypes. RESULTS: Four hypertension-related variants were associated with congenital heart defects among NHW women (N = 1,568 with affected pregnancies). For example, 1 intronic variant in ARHGAP2, rs633185, was associated with conotruncal defects (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 1.1-1.6). Additionally, 2 variants were associated with congenital heart defects among Hispanic women (N = 489 with affected pregnancies). The GRS had a significant association with septal defects (OR: 2.1, 95% CI: 1.2-3.5) among NHW women. CONCLUSIONS: We replicated a previously reported association between rs633185 and conotruncal defects. Although additional hypertension-related SNPs were also associated with congenital heart defects, more work is needed to better understand the relationship between genetic risk for maternal hypertension and congenital heart defects occurrence.

13.
J Med Genet ; 58(7): 484-494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820034

RESUMO

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.

14.
Am J Clin Nutr ; 112(5): 1390-1403, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33022704

RESUMO

Folate, an essential nutrient found naturally in foods in a reduced form, is present in dietary supplements and fortified foods in an oxidized synthetic form (folic acid). There is widespread agreement that maintaining adequate folate status is critical to prevent diseases due to folate inadequacy (e.g., anemia, birth defects, and cancer). However, there are concerns of potential adverse effects of excess folic acid intake and/or elevated folate status, with the original concern focused on exacerbation of clinical effects of vitamin B-12 deficiency and its role in neurocognitive health. More recently, animal and observational studies have suggested potential adverse effects on cancer risk, birth outcomes, and other diseases. Observations indicating adverse effects from excess folic acid intake, elevated folate status, and unmetabolized folic acid (UMFA) remain inconclusive; the data do not provide the evidence needed to affect public health recommendations. Moreover, strong biological and mechanistic premises connecting elevated folic acid intake, UMFA, and/or high folate status to adverse health outcomes are lacking. However, the body of evidence on potential adverse health outcomes indicates the need for comprehensive research to clarify these issues and bridge knowledge gaps. Three key research questions encompass the additional research needed to establish whether high folic acid or total folate intake contributes to disease risk. 1) Does UMFA affect biological pathways leading to adverse health effects? 2) Does elevated folate status resulting from any form of folate intake affect vitamin B-12 function and its roles in sustaining health? 3) Does elevated folate intake, regardless of form, affect biological pathways leading to adverse health effects other than those linked to vitamin B-12 function? This article summarizes the proceedings of an August 2019 NIH expert workshop focused on addressing these research areas.


Assuntos
Ácido Fólico/administração & dosagem , Adolescente , Adulto , Criança , Pré-Escolar , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Humanos , Pessoa de Meia-Idade , Estados Unidos
15.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066028

RESUMO

Neural tube closure is a critical early step in central nervous system development that requires precise control of metabolism to ensure proper cellular proliferation and differentiation. Dysregulation of glucose metabolism during pregnancy has been associated with neural tube closure defects (NTDs) in humans suggesting that the developing neuroepithelium is particularly sensitive to metabolic changes. However, it remains unclear how metabolic pathways are regulated during neurulation. Here, we used single-cell mRNA-sequencing to analyze expression of genes involved in metabolism of carbon, fats, vitamins, and antioxidants during neurulation in mice and identify a coupling of glycolysis and cellular proliferation to ensure proper neural tube closure. Using loss of miR-302 as a genetic model of cranial NTD, we identify misregulated metabolic pathways and find a significant upregulation of glycolysis genes in embryos with NTD. These findings were validated using mass spectrometry-based metabolite profiling, which identified increased glycolytic and decreased lipid metabolites, consistent with a rewiring of central carbon traffic following loss of miR-302. Predicted miR-302 targets Pfkp, Pfkfb3, and Hk1 are significantly upregulated upon NTD resulting in increased glycolytic flux, a shortened cell cycle, and increased proliferation. Our findings establish a critical role for miR-302 in coordinating the metabolic landscape of neural tube closure.


Assuntos
Ciclo Celular , Glicólise , MicroRNAs/metabolismo , Tubo Neural/metabolismo , Neurulação , Animais , Células Cultivadas , Hexoquinase/genética , Hexoquinase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Tubo Neural/embriologia , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
16.
Hum Mol Genet ; 29(18): 3132-3144, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32969478

RESUMO

Neural tube defects (NTDs) are a group of severe congenital malformations caused by a failure of neural tube closure during early embryonic development. Although extensively investigated, the genetic etiology of NTDs remains poorly understood. FKBP8 is critical for proper mammalian neural tube closure. Fkbp8-/- mouse embryos showed posterior NTDs consistent with a diagnosis of spina bifida (SB). To date, no publication has reported any association between FKBP8 and human NTDs. Using Sanger sequencing on genomic DNA samples from 472 SB and 565 control samples, we identified five rare (MAF ≤ 0.001) deleterious variants in SB patients, while no rare deleterious variant was identified in the controls (P = 0.0191). p.Glu140* affected FKBP8 localization to the mitochondria and created a truncated form of the FKBP8 protein, thus impairing its interaction with BCL2 and ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. p.Lys315Asn further increased the cellular apoptosis. RNA sequencing on anterior and posterior tissues isolated from Fkbp8-/- and wildtype mice at E9.5 and E10.5 showed that Fkbp8-/- embryos have an abnormal expression profile within tissues harvested at posterior sites, thus leading to a posterior NTD. Moreover, we found that Fkbp8 knockout mouse embryos have abnormal expression of Wnt3a and Nkx2.9 during the early stage of neural tube development, perhaps also contributing to caudal specific NTDs. These findings provide evidence that functional variants of FKBP8 are risk factors for SB, which may involve a novel mechanism by which Fkbp8 mutations specifically cause SB in mice.


Assuntos
Proteínas de Homeodomínio/genética , Disrafismo Espinal/genética , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética , Proteína Wnt3A/genética , Animais , Apoptose/genética , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fatores de Risco , Disrafismo Espinal/patologia
17.
Prenat Diagn ; 40(9): 1047-1055, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468575

RESUMO

Every year nearly 6 percent of children worldwide are born with a serious congenital malformation, resulting in death or lifelong disability. In the United States, birth defects remain one of the leading causes of infant mortality. Among the common structural congenital defects are conditions known as neural tube defects (NTDs). These are a class of malformation of the brain and spinal cord where the neural tube fails to close during the neurulation. Although NTDs remain among the most pervasive and debilitating of all human developmental anomalies, there is insufficient understanding of their etiology. Previous studies have proposed that complex birth defects like NTDs are likely omnigenic, involving interconnected gene regulatory networks with associated signals throughout the genome. Advances in technologies have allowed researchers to more critically investigate regulatory gene networks in ever increasing detail, informing our understanding of the genetic basis of NTDs. Employing a systematic analysis of these complex birth defects using massively parallel DNA sequencing with stringent bioinformatic algorithms, it is possible to approach a greater level of understanding of the genomic architecture underlying NTDs. Herein, we present a brief overview of different approaches undertaken in our laboratory to dissect out the genetics of susceptibility to NTDs. This involves the use of mouse models to identify candidate genes, as well as large scale whole genome/whole exome (WGS/WES) studies to interrogate the genomic landscape of NTDs. The goal of this research is to elucidate the gene-environment interactions contributing to NTDs, thus encouraging global research efforts in their prevention.

18.
Hum Genet ; 139(10): 1299-1314, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32356230

RESUMO

Extensive studies that have sought causative mutation(s) for neural tube defects (NTDs) have yielded limited positive findings to date. One possible reason for this is that many studies have been confined to analyses of germline mutations and so may have missed other, non-germline mutations in NTD cases. We hypothesize that somatic mutations of planar polarity pathway (PCP) genes may play a role in the development of NTDs. Torrent™ Personal Genome Machine™ (PGM) sequencing was designed for selected PCP genes in paired DNA samples extracted from the tissues of lesion sites and umbilical cord from 48 cases. Sanger sequencing was used to validate the detected mutations. The source and distribution of the validated mutations in tissues from different germ layers were investigated. Subcellular location, western blotting, and luciferase assays were performed to better understand the effects of the mutations on protein localization, protein level, and pathway signaling. ix somatic mutations were identified and validated, which showed diverse distributions in different tissues. Three somatic mutations were novel/rare: CELSR1 p.Gln2125His, FZD6 p.Gln88Glu, and VANGL1 p.Arg374His. FZD6 p.Gln88Glu caused mislocalization of its protein from the cytoplasm to the nucleus, and disrupted the colocalization of CELSR1 and FZD6. This mutation affected non-canonical WNT signaling in luciferase assays. VANGL1 p.Arg374His impaired the co-localization of CELSR1 and VANGL1, increased the protein levels of VANGL1, and influenced cell migration. In all, 7/48 (14.5%) of the studied NTD cases contained somatic PCP mutations. Somatic mutations in PCP genes (e.g., FZD6 and VANGL1) are associated with human NTDs, and they may occur in different stages and regions during embryonic development, resulting in a varied distribution in fetal tissues/organs.


Assuntos
Caderinas/genética , Proteínas de Transporte/genética , Receptores Frizzled/genética , Proteínas de Membrana/genética , Mutação , Defeitos do Tubo Neural/genética , Tubo Neural/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Feto , Receptores Frizzled/metabolismo , Expressão Gênica , Genoma Humano , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Tubo Neural/anormalidades , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma
19.
Neurogenetics ; 21(3): 217-225, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388773

RESUMO

Select single-nucleotide variants in planar cell polarity (PCP) genes are associated with increased risk for neural tube defects (NTDs). However, whether copy number variants (CNVs) in PCP genes contribute to NTDs is unknown. Considering that CNVs are implicated in several human developmental disorders, we hypothesized that CNVs in PCP genes may be causative factors to human NTDs. DNA from umbilical cord tissues of NTD-affected fetuses and parental venous blood samples were collected. We performed a quantitative analysis of copy numbers of all exon regions in the VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3, and PTK7 genes using a CNVplex assay. Quantitative real-time PCR (qPCR) was carried out to confirm the results of CNV analysis. As a result, 16 CNVs were identified among the NTDs. Of these CNVs, 5 loci were identified in 11 NTD probands with CNVs involving DVL2 (exons 1-15), VANGL1 (exons 1-7, exon 8), and VANGL2 (exons 5-8, exons 7 and 8). One CNV (DVL2 exons 1-15) was a duplication and the remaining 15 CNVs were deletions. Eleven CNVs were confirmed by qPCR. One de novo CNV in VANGL1 and one DVL2 were detected from two cases. Compared with unaffected control populations in 1000 Genome, ExAC, MARRVEL, DGV, and dbVar databases, the frequencies of de novo deletion in VANGL1 (1.14%) and de novo duplication in DVL2 (0.57%) were significantly higher in our NTD subjects (p < 0.05). This study demonstrates that de novo CNVs in PCP genes, notably deletions in VANGL1 and gains in DVL2, could contribute to the risk of NTDs.


Assuntos
Polaridade Celular/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Defeitos do Tubo Neural/genética , Caderinas/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Proteínas Desgrenhadas/genética , Éxons , Deleção de Genes , Dosagem de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/genética , Risco , Proteínas Supressoras de Tumor/genética , Cordão Umbilical/metabolismo
20.
Birth Defects Res ; 112(16): 1187-1193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32415919

RESUMO

BACKGROUND: About a decade ago, a hypothesis was put forward to explain the preponderance of females among neural tube defect (NTD) fetuses. That hypothesis predicts that a woman's higher levels of early gestational intake of methyl groups, such as folic acid, will be associated with lesser male-to-female ratio differences in NTD-affected births, specifically less preponderance of females. We explored this hypothesis in four distinct studies that investigated human NTDs, obtained information on folic acid, and capitalized on timing of folic acid fortification by investigating data that were collected both prior to and after the 1998 initiation of U.S. mandatory folic acid fortification of grains. METHODS: We analyzed data from four population-based case control studies conducted in California for birth years spanning 1987-2011. Two studies were conducted before folic acid fortification of the U.S. food supply. Each of the four studies included interviews of women who either had NTD-affected pregnancies (cases) or who did not have a pregnancy affected by a birth defect (controls). In each study, information on periconceptional supplement use was elicited. We explored male-to-female ratios and 95% binomial confidence limits in each data set. RESULTS: Our analyses of two case-control studies performed prior to and two performed post mandatory folate fortification in the United States showed that more NTD-affected fetuses were female in the first two studies. In the studies done before fortification, the frequency of females was even greater among those pregnancies without folic acid supplementation. CONCLUSION: Our findings suggest folic acid may differentially reduce risk of NTDs among female fetuses.


Assuntos
Ácido Fólico , Defeitos do Tubo Neural , Estudos de Casos e Controles , Suplementos Nutricionais , Feminino , Humanos , Masculino , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/prevenção & controle , Gravidez , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...