Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 19(1): 240, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664920

RESUMO

BACKGROUND: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. METHODS: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. RESULTS: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. CONCLUSIONS: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31603985

RESUMO

Allostatic Load (AL) and epigenetic clocks both attempt to characterise the accelerated ageing of biological systems, but at present it is unclear whether these measures are complementary or distinct. This study examines the cross-sectional association of AL with Epigenetic Age Acceleration (EAA) in a sub-sample of 490 community dwelling older-adults participating in The Irish Longitudinal study on Aging (TILDA). A battery of 14 biomarkers representing the activity of 4 different physiological systems: immunological, cardiovascular, metabolic, renal, was used to construct the AL score. DNA methylation age was computed according to the algorithms described by Horvath, Hannum and Levine allowing for estimation of whether an individual is experiencing accelerated or decelerated ageing. Horvath, Hannum and Levine EAA correlated 0.05, 0.03, and 0.21 with AL respectively. Disaggregation by sex revealed that AL was more strongly associated with EAA in men compared with women as assessed using Horvath's clock. Metabolic dysregulation was a strong driver of EAA in men as assessed using Horvath and Levine's clock, while metabolic and cardiovascular dysregulation were associated with EAA in women using Levine's clock. Results indicate that AL and the epigenetic clocks are measuring different age-related variance and implicate sex-specific drivers of biological ageing.

3.
Int J Cancer ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513294

RESUMO

Although smoking and oxidative stress are known contributors to lung carcinogenesis, their mechanisms of action remain poorly understood. To shed light into these mechanisms, we applied a novel approach using Cys34-adductomics in a lung cancer nested case-control study (n = 212). Adductomics profiles were integrated with DNA-methylation data at established smoking-related CpG sites measured in the same individuals. Our analysis identified 42 Cys34-albumin adducts, of which 2 were significantly differentially abundant in cases and controls: adduct of N-acetylcysteine (NAC, p = 4.15 × 10-3 ) and of cysteinyl-glycine (p = 7.89 × 10-3 ). Blood levels of the former were found associated to the methylation levels at 11 smoking-related CpG sites. We detect, for the first time in prospective blood samples, and irrespective of time to diagnosis, decreased levels of NAC adduct in lung cancer cases. Altogether, our results highlight the potential role of these adducts in the oxidative stress response contributing to lung carcinogenesis years before diagnosis.

4.
Circulation ; 140(8): 645-657, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

5.
Epigenetics ; 14(10): 977-988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31179817

RESUMO

The biological mechanisms through which adherence to Mediterranean Diet (MD) protects against colon cancer (CC) are poorly understood. Evidence suggests that chronic inflammation may be implicated in the pathway. Both diet and CC are related to epigenetic regulation. We performed a nested case-control study on 161 pairs from the Italian component of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, in which we looked for the methylation signals in DNA extracted from leucocytes associated with both CC and MD in 995 CpGs located in 48 inflammation genes. The DNA methylation signals detected in this analysis were validated in a subgroup of 47 case-control pairs and further replicated (where validated) in 95 new pairs by means of pyrosequencing. Among the CpG sites selected a-priori in inflammation-related genes, seven CpG sites were found to be associated with CC status and with MD, in line with its protective effect. Only two CpG sites (cg17968347-SERPINE1 and cg20674490-RUNX3) were validated using bisulphite pyrosequencing and, after replication, we found that DNA methylation of cg20674490-RUNX3 may be a potential molecular mediator explaining the protective effect of MD on CC onset. The use of a 'meet-in-the-middle' approach to identify the overlap between exposure and predictive markers of disease is innovative in studies on the relationship between diet and cancer, in which exposure assessment is difficult and the mechanisms through which the nutrients exert their protective effect is largely unknown.

6.
Aging (Albany NY) ; 11(7): 2045-2070, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31009935

RESUMO

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.

7.
Psychoneuroendocrinology ; 104: 64-73, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30818253

RESUMO

Individuals of lower socio-economic position (SEP) carry a heavier burden of disease and morbidity and live shorter lives on average compared with their more advantaged counterparts. This has sparked research interest in the processes and mechanisms via which social adversity gets biologically embedded. The present study directly compares the empirical worth of two candidate mechanisms: Allostatic Load (AL) and the Epigenetic Clock(s) for advancing our understanding of embodiment using a sub-sample of 490 individuals from the Irish Longitudinal Study (TILDA) who were explicitly selected for this purpose based on their inter-generational life course social class trajectory. A battery of 14 biomarkers representing the activity of 4 different physiological systems: Immunological, Cardiovascular, Metabolic, and Renal was used to construct the AL score. Biomarkers were dichotomised into high and low risk groups according to sex-specific quartiles of risk and summed to create a count ranging from 0-14. Three measures of epigenetic age acceleration were computed according to three sets of age-associated Cytosine-phosphate-Guanine (CpG) sites described by Horvath, Hannum and Levine. AL was strongly socially patterned across a number of measures of SEP, while the epigenetic clocks were not. AL partially mediated the association between measures of SEP and an objective measure of physiological functioning: performance on the Timed Up and Go (TUG test). We conclude that AL may represent the more promising candidate for understanding the pervasive link between SEP and health.

8.
Environ Int ; 119: 334-345, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990954

RESUMO

BACKGROUND: Epidemiologic evidence indicates common risk factors, including air pollution exposure, for respiratory and cardiovascular diseases, suggesting the involvement of common altered molecular pathways. OBJECTIVES: The goal was to find intermediate metabolites or metabolic pathways that could be associated with both air pollutants and health outcomes ("meeting-in-the-middle"), thus shedding light on mechanisms and reinforcing causality. METHODS: We applied a statistical approach named 'meet-in-the-middle' to untargeted metabolomics in two independent case-control studies nested in cohorts on adult-onset asthma (AOA) and cardio-cerebrovascular diseases (CCVD). We compared the results to identify both common and disease-specific altered metabolic pathways. RESULTS: A novel finding was a strong association of AOA with ultrafine particles (UFP; odds ratio 1.80 [1.26, 2.55] per increase by 5000 particles/cm3). Further, we have identified several metabolic pathways that potentially mediate the effect of air pollution on health outcomes. Among those, perturbation of Linoleate metabolism pathway was associated with air pollution exposure, AOA and CCVD. CONCLUSIONS: Our results suggest common pathway perturbations may occur as a consequence of chronic exposure to air pollution leading to increased risk for both AOA and CCVD.

9.
Int J Obes (Lond) ; 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29713043

RESUMO

BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction. METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population. RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P < 1.6×10-3) and one intergenic locus on chromosome 1 was inversely associated with myocardial infarction (P < 1.25×10-3), independently of obesity and established risk factors. CONCLUSION: Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could offer clues as to underlying biological mechanisms.

10.
Genome Biol ; 19(1): 2, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29310692

RESUMO

BACKGROUND: Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity. RESULTS: Here, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially greater than can be explained by their genetic identity. This "epigenetic supersimilarity" apparently results from locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation at these loci years before diagnosis is associated with risk of developing several types of cancer. CONCLUSIONS: These results establish a link between early embryonic epigenetic development and adult disease. More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the phenotypic similarity of monozygotic twins.


Assuntos
Epigênese Genética , Gêmeos Monozigóticos/genética , Ilhas de CpG , DNA/sangue , Metilação de DNA , Genoma Humano , Humanos , Modelos Genéticos , Neoplasias/genética , Gêmeos Dizigóticos
11.
Am J Epidemiol ; 187(3): 529-538, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020168

RESUMO

Measures of biological age based on blood DNA methylation, referred to as age acceleration (AA), have been developed. We examined whether AA was associated with health risk factors and overall and cause-specific mortality. At baseline (1990-1994), blood samples were drawn from 2,818 participants in the Melbourne Collaborative Cohort Study (Melbourne, Victoria, Australia). DNA methylation was determined using the Infinium HumanMethylation450 BeadChip array (Illumina Inc., San Diego, California). Mixed-effects models were used to examine the association of AA with health risk factors. Cox models were used to assess the association of AA with mortality. A total of 831 deaths were observed during a median 10.7 years of follow-up. Associations of AA were observed with male sex, Greek nationality (country of birth), smoking, obesity, diabetes, lower education, and meat intake. AA measures were associated with increased mortality, and this was only partly accounted for by known determinants of health (hazard ratios were attenuated by 20%-40%). Weak evidence of heterogeneity in the association was observed by sex (P = 0.06) and cause of death (P = 0.07) but not by other factors. DNA-methylation-based AA measures are associated with several major health risk factors, but these do not fully explain the association between AA and mortality. Future research should investigate what genetic and environmental factors determine AA.

12.
Environ Mol Mutagen ; 59(3): 234-246, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29114965

RESUMO

Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio- and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case-control study on CCVD nested in a cohort of 18,982 individuals from the EPIC-Italy study. We measured air pollution, inflammatory biomarkers, and whole-genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former- and never-smokers, with available stored blood sample, that arose in the cohort during the follow-up. We identified enrichment of altered DNA methylation in "ROS/Glutathione/Cytotoxic granules" and "Cytokine signaling" pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin-17 was associated with higher exposure to NO2 (P = 0.0004), NOx (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04-3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the "Cytokine signaling" pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234-246, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Poluição do Ar/efeitos adversos , Biomarcadores/análise , Doenças Cardiovasculares/epidemiologia , Transtornos Cerebrovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Inflamação/complicações , Estresse Oxidativo , Adulto , Idoso , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Estudos de Casos e Controles , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/metabolismo , Feminino , Humanos , Incidência , Inflamação/metabolismo , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Fumar
13.
Immunobiology ; 223(1): 112-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030005

RESUMO

Systemic sclerosis (SSc), an autoimmune disorder, is characterized by vasculopathy, inflammation, progressive perivascular and interstitial fibrosis. Its pathogenesis is largely unknown, however strong evidences suggest that genetic predisposition may contribute to SSc development. Several gene polymorphisms involved in regulatory T cell function have been identified in many autoimmune diseases, including SSc. Moreover, dysregulation of co-stimulatory and/or co-inhibitory signals, including ICOS signalling, can lead to autoimmunity. The aim of the present study was to investigate the association of the FOXP3 rs2294020, ICOS rs6726035 and ICOSL rs378299 SNPs with both the susceptibility and the progression to SSc in an Italian case-series of patients. SNP genotyping results were successfully obtained from a total of 350 subjects including 166 individuals with SSc and 184 healthy controls. Although analysis tests did not show any significant associations between the SNPs under study and susceptibility to SSc, the occurrence of FOXP3 rs2294020 in female patients was associated with decreased time to progression from early to definite SSc (allelic model: HR=1.43; CI=1.03-1.99; p=0.03; dominant model: HR=1.54; CI=1.04-2.28; p=0.03). The inclusion of presence of ACA autoantibodies in the model did not significantly change the estimates. No conclusions can be drawn for the susceptibility to the disease or the time to progression in men due to the low statistical power. This study provides evidence of the association of rs2294020 with SSc evolution in female patients, modulating the time of progression from the diagnosis of early SSc to the diagnosis of definite SSc, while no effect on SSc susceptibility per se was found. rs2294020 may be considered a disease-modifying gene-variant rather than a disease-susceptibility SNP in SSc.


Assuntos
Fatores de Transcrição Forkhead/genética , Genótipo , Escleroderma Sistêmico/genética , Estudos de Casos e Controles , Progressão da Doença , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Itália , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
14.
Sci Rep ; 7(1): 16266, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176660

RESUMO

Low socioeconomic status (SES) is associated with earlier onset of age-related chronic conditions and reduced life-expectancy, but the underlying biomolecular mechanisms remain unclear. Evidence of DNA-methylation differences by SES suggests a possible association of SES with epigenetic age acceleration (AA). We investigated the association of SES with AA in more than 5,000 individuals belonging to three independent prospective cohorts from Italy, Australia, and Ireland. Low SES was associated with greater AA (ß = 0.99 years; 95% CI 0.39,1.59; p = 0.002; comparing extreme categories). The results were consistent across different SES indicators. The associations were only partially modulated by the unhealthy lifestyle habits of individuals with lower SES. Individuals who experienced life-course SES improvement had intermediate AA compared to extreme SES categories, suggesting reversibility of the effect and supporting the relative importance of the early childhood social environment. Socioeconomic adversity is associated with accelerated epigenetic aging, implicating biomolecular mechanisms that may link SES to age-related diseases and longevity.

15.
Environ Mol Mutagen ; 58(8): 551-559, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843010

RESUMO

Increased telomerase expression has been implicated in the pathogenesis of lung cancer and, since the primary cause of lung cancer is smoking, an association between telomerase reactivation and tobacco smoke has been proposed. In this work an investigation has been performed to assess the relationship between tobacco smoke exposure and telomerase activity (TA) in peripheral blood mononuclear cells of healthy smokers. The methylation status of the catalytic subunit of telomerase hTERT was concurrently investigated to assess the possible association between epigenetic modifications of hTERT and TA. Besides, the association between smoke and telomere length (TL) has been evaluated. Healthy monozygotic twins with discordant smoking habits were selected as study population to minimize inter-individual differences because of demographic characteristics and genetic heterogeneity. Statistically significant higher values of TA and TL were observed in smokers compared to nonsmoker co-twins. The multivariate analysis of data showed, besides smoking habits (P = 0.02), an influence of gender (P = 0.006) and BMI (P = 0.001) on TA and a borderline effect of gender (P = 0.05) on TL. DNA methylation analysis, focused on 100 CpG sites mapping in hTERT, highlighted nine CpG sites differentially methylated in smokers. When co-twins were contrasted, selecting as variables the intra-twin difference in TA and hTERT DNA methylation, a statistically significant inverse correlation (P = 0.003) was observed between TA and DNA methylation at the cg05521538 site. In conclusion, these results indicate an association of tobacco smoke with TA and TL and suggest a possible association between smoke-induced epigenetic effects and TA in healthy smokers. Environ. Mol. Mutagen. 58:551-559, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Metilação de DNA/genética , Neoplasias Pulmonares/genética , Fumar/genética , Telomerase/genética , Adulto , Epigênese Genética , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Fumar/efeitos adversos , Fumar/patologia , Telômero/genética , Homeostase do Telômero/genética , Gêmeos Monozigóticos
16.
Nature ; 541(7635): 81-86, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002404

RESUMO

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Assuntos
Adiposidade/genética , Índice de Massa Corporal , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Obesidade/genética , Tecido Adiposo/metabolismo , Grupo com Ancestrais do Continente Asiático/genética , Sangue/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Europa (Continente)/etnologia , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Índia/etnologia , Masculino , Obesidade/sangue , Obesidade/complicações , Sobrepeso/sangue , Sobrepeso/complicações , Sobrepeso/genética
17.
Lancet Diabetes Endocrinol ; 5(2): 97-105, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27908689

RESUMO

BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. METHODS: In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. FINDINGS: Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m2, -0·09 to 0·30). INTERPRETATION: PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins. FUNDING: British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Análise da Randomização Mendeliana/métodos , Pró-Proteína Convertase 9/genética , Glicemia/metabolismo , Estudos de Casos e Controles , LDL-Colesterol/sangue , LDL-Colesterol/genética , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
18.
Genome Biol ; 17(1): 255, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955697

RESUMO

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10-7) in the discovery panel of European ancestry and replicated (P < 2.29 × 10-4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10-5), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10-3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10-5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.


Assuntos
Proteína C-Reativa/genética , Epigênese Genética , Inflamação/genética , Locos de Características Quantitativas/genética , Afro-Americanos , Ilhas de CpG/genética , Metilação de DNA/genética , Grupo com Ancestrais do Continente Europeu , Feminino , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Inflamação/sangue , Masculino , Motivos de Nucleotídeos/genética
19.
Mutat Res ; 770(Pt A): 26-34, 2016 Oct - Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27894688

RESUMO

The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed either environmentally or occupationally to genotoxic chemicals. However, there is an emerging need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to main classes of chemical genotoxins. The main aim of the present report is to systematically review published studies investigating the use of the lymphocyte CBMN assay to determine DNA damage in subjects exposed to anaesthetic gases. We also compared performance of the CBMN assay with other DNA damage assays employed and identified strengths and weaknesses of the published studies. We have retrieved 11 studies, published between 1996 and 2013, reporting MN associated with occupational exposures (operating room personnel). The individual job categories were often described (anaesthesiologists, technicians, radiologists) among cases, as well as duration of exposure. All studies reported the compounds present at the workplace and, in some instances, the exposure levels were measured. Controls were usually recruited among personnel at the hospital not exposed to anaesthetics or they were healthy unexposed subjects from general population. The number of investigated subjects, due to the character of the occupation, was relatively smaller than those investigated in other occupational monitoring settings. Overall, the majority of the studies were age- and gender- matched (or investigated only males or females) while less attention was given to lifestyle confounders. Appropriate measurement of exposure, available in approximately half of the studies only, was compromised by the lack of the personal dosimetry-based determinations. In all studies, higher MN frequencies were observed in exposed individuals. The meta-analysis of mean MN frequency of combined studies confirmed this tendency (log mean ratio=0.56 [0.34-0.77]; P=3.51×10-7). Similar differences between the exposed and controls were also observed for other biomarkers.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Aberrações Cromossômicas , Citocinese , Pessoal de Saúde , Linfócitos/efeitos dos fármacos , Exposição Ocupacional , Humanos , Linfócitos/ultraestrutura
20.
PLoS One ; 11(11): e0166015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824951

RESUMO

BACKGROUND: Elevated levels of C-reactive protein (CRP, determined by a high-sensitivity assay) indicate low-grade inflammation which is implicated in many age-related disorders. Epigenetic studies on CRP might discover molecular mechanisms underlying CRP regulation. We aimed to identify DNA methylation sites related to CRP concentrations in cells and tissues regulating low-grade inflammation. RESULTS: Genome-wide DNA methylation was measured in peripheral blood in 1,741 participants of the KORA F4 study using Illumina HumanMethylation450 BeadChip arrays. Four CpG sites (located at BCL3, AQP3, SOCS3, and cg19821297 intergenic at chromosome 19p13.2, P ≤ 1.01E-07) were significantly hypomethylated at high CRP concentrations independent of various confounders including age, sex, BMI, smoking, and white blood cell composition. Findings were not sex-specific. CRP-related top genes were enriched in JAK/STAT pathways (Benjamini-Hochberg corrected P < 0.05). Results were followed-up in three studies using DNA from peripheral blood (EPICOR, n = 503) and adipose tissue (TwinsUK, n = 368) measured as described above and from liver tissue (LMU liver cohort, n = 286) measured by MALDI-TOF mass spectrometry using EpiTYPER. CpG sites at the AQP3 locus (significant p-values in peripheral blood = 1.72E-03 and liver tissue = 1.51E-03) and the SOCS3 locus (p-values in liver < 2.82E-05) were associated with CRP in the validation panels. CONCLUSIONS: Epigenetic modifications seem to engage in low-grade inflammation, possibly via JAK/STAT mediated pathways. Results suggest a shared relevance across different tissues at the AQP3 locus and highlight a role of DNA methylation for CRP regulation at the SOCS3 locus.


Assuntos
Aquaporina 3/fisiologia , Epigênese Genética/fisiologia , Inflamação/genética , Proteína 3 Supressora da Sinalização de Citocinas/fisiologia , Tecido Adiposo/fisiopatologia , Aquaporina 3/genética , Proteína C-Reativa/fisiologia , Metilação de DNA/fisiologia , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Inflamação/fisiopatologia , Janus Quinases/fisiologia , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA