Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FASEB J ; 36 Suppl 12022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35553427

RESUMO

Gastrointestinal (GI) slow wave recordings have a long history of investigation but currently limited use in clinical diagnosis and treatment. GI myoelectric activity could potentially play a role in the treatment of functional and motility-related GI diseases and obesity by providing biomarkers of GI function or a target for clinical interventions. Significant issues, however, hinder our understanding of these signals, including: (1) use of abdominal surface recordings with low spatio-temporal resolution; (2) typical use of few signaling features, such as deviations from dominant slow wave frequencies; and, (3) lack of defined relationships to GI functions, for example, muscle contraction and movement of luminal contents. Thus, there is a critical need to determine the value of GI myoelectric signals for clinical application and to assess stability of these signals in different testing conditions. As a first step, we tested the hypothesis that gastric myoelectric activity differs between awake and anesthetized states. Acute surgical preparations with open abdomen GI recordings are potentially an ideal setting to investigate slow wave physiology, but it is unknown how anesthesia affects gastric myoelectric signals. Here, we chronically implanted 5 ferrets with four gastric serosal surface electrodes, from fundus to antrum. Following recovery, we conducted electrophysiological recordings under awake and isoflurane anesthesia (from 1 to 3%) conditions. By comparing 95% confidence intervals for the Welch's overlapped segment averaging power spectral densities (PSD) estimated from myoelectric recordings in awake and anesthetized states, we observed statistically significant reductions in power in the anesthetized state (p<0.01 for each of 18 electrodes across animals). The reductions in area under PSD curves were over 90% for 14 electrodes, and ranged between 41% and 88% for 4 electrodes. Suppression did not occur for one electrode, and another was discarded due to corrupted recordings. Moreover, signal power after exposure to isoflurane anesthesia was concentrated in narrow frequency bands, with marked bimodalities in 17 electrodes, in contrast to a more uniform power distribution in the awake state. The time courses of PSDs were also markedly different in awake and anesthetized states, with gastric activity presenting little variation over time in the latter, and substantial variability in the former, which may be associated with behavioral movement. Indeed, in the awake state, one animal had distinct and contiguous long epochs of movement (e.g., grooming, standing) and rest, which correlated with high and low power respectively (p<0.01 for 3 channels; p<0.05 for 1 channel in the animal). These data reveal potential changes in gastric myoelectric activity under anesthesia, which could impact post-operative recovery. This study also provides insight into the changes in gastric myoelectric activity during anesthesia and reinforces the need to conduct recordings in the awake state.

2.
Assist Technol ; : 1-13, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982647

RESUMO

Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians (68.8%), regulators (67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.

3.
Percept Mot Skills ; 129(1): 47-62, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913749

RESUMO

The underlying mechanism(s) of the Bilateral Deficit (BLD) phenomenon is without consensus. Methodological inconsistencies across prior works may be an important source of equivocal results and interpretations. Based on repeatability problems with the BLD measure and maximal force definition, the presence or absence of the BLD phenomenon is altered, shifting conclusions of its mechanistic cause. Our purpose in this study was to examine methodological inconsistencies in applying the BLD measure to establish optimal methods for evaluating the underlying mechanism. Eleven healthy participants engaged in one familiarity and five test sessions, completing bilateral and unilateral elbow maximal voluntary isometric contractions. We defined maximal force by averaged and absolute peak and plateau values. BLD was evident if the bilateral index (BI), the ratio of the bilateral over summed unilateral forces, was statistically different from zero. We addressed interclass correlations (ICC), Chronbach's α, standard error of the mean, and minimal detectable change between and within sessions for all force measures and BI. We evaluated all combinations of sessions (i.e., 1-2, 3-5, 5-6) and maximal forces to establish the optimal number of sessions to achieve reliability. BLD was present for test sessions, but not for familiarization. All measures of maximal force were highly reliable between and within sessions (ICC(2,1) ≥ .895). BI was only considered significantly reliable in sessions 3-5 (p < .027), defined by absolute and average plateau forces, but reliability was still quantifiably poor (absolute: ICC(2,1) = .392; average: ICC(2,1) = .375). These results demonstrate that high force reliability within and between sessions does not translate to stable and reliable BI, potentially exposing the lack of any defined BLD mechanism.


Assuntos
Cotovelo , Músculo Esquelético , Eletromiografia , Humanos , Contração Isométrica , Reprodutibilidade dos Testes
4.
J Surg Case Rep ; 2021(10): rjab463, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34703575

RESUMO

Bioelectronic medical approaches to control vagus nerve-to-organ signaling have the potential to treat cardiac, respiratory, gastrointestinal (GI) and metabolic diseases, such as obesity. Unlike cervical vagus nerve stimulation (VNS), abdominal VNS could provide specific therapeutic control of the GI tract without off-target effects on thoracic organs; however, surgical approaches for abdominal VNS electrode placement are not well established. Moreover, optimal device configurations and additional placement of GI recording electrodes for closed-loop control are largely unknown. We designed VNS cuff and GI planar serosal electrodes and tested placement of these devices in laparoscopic surgery in two cadavers. We determined that electrode positioning on the ventral abdominal vagus nerve and gastric antrum was feasible but other sites, such as the duodenum and proximal stomach, were more difficult. The current investigation can guide potential placement and design of VNS cuff and GI electrodes for development of closed-loop GI therapeutic devices.

5.
Int IEEE EMBS Conf Neural Eng ; 2021: 609-612, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34630868

RESUMO

Chronic pain affects millions of people in the United States and pharmacological treatments have been ineffective. Dorsal root ganglion (DRG) stimulation is a neuromodulation method that delivers electrical stimulation to the DRG to relieve pain. DRG electrodes are rigid and cylindrical. The implantation of DRG electrodes requires a technically-challenging surgery that involves steering electrodes laterally towards the DRG. The Injectrode is an injectable conductive polymer that cures in place and is capable of delivering electrical current to stimulate neural tissue. We used the Injectrode to stimulate the L6 and L7 DRG in cats, measuring neural responses evoked in the sciatic, tibial, and common peroneal nerves to measure the thresholds for activating fibers. A cylindrical stainless-steel electrode was used for comparison. Thresholds were 38% higher with the Injectrode versus stainless-steel, likely owing to its larger contact surface area with the DRG. Both Aα and Aß sensory fibers were activated using DRG stimulation. The Injectrode has the potential to offer a new and simple method for DRG stimulation that can potentially offer more complete coverage of the DRG.

6.
J Neural Eng ; 18(5)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34650008

RESUMO

Objective. The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal electrode.Approach. We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated the DRG using an Injectrode or a stainless steel (SS) electrode using biphasic pulses at three different pulse widths (80, 150, 300µs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined the charge-thresholds and recruitment rates for ECAPs from Aα, Aß, and Aδfibers. We also performed electrochemical impedance spectroscopy measurements for both electrode types.Main results. The ECAP thresholds for the Injectrode did not differ from the SS electrode across all primary afferents (Aα, Aß, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. Thresholds for generating ECAPs from Aßfibers were 100.0 ± 32.3 nC using the SS electrode, and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over several hours of stimulation. The rate of recruitment was similar between the Injectrodes and SS electrode and decreased with wider pulse widths.Significance. The Injectrode can effectively excite primary afferents when used for DRG stimulation within the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through minimally invasive techniques while achieving similar neural activation to conventional electrodes, making it an excellent candidate for future DRG stimulation and neuroprosthetic applications.


Assuntos
Gânglios Espinais , Nervo Fibular , Potenciais de Ação , Estimulação Elétrica/métodos , Eletrodos , Potenciais Evocados , Gânglios Espinais/fisiologia
9.
Sci Rep ; 11(1): 12925, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155231

RESUMO

Dysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Assuntos
Estimulação do Nervo Vago , Nervo Vago/fisiologia , Animais , Eletrodos , Potenciais Evocados , Furões , Trato Gastrointestinal/inervação , Neurônios/fisiologia , Gânglio Nodoso/fisiologia , Estimulação do Nervo Vago/métodos
10.
J Neural Eng ; 18(5)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33784636

RESUMO

Objective.Electrical vagus nerve stimulation (VNS) has the potential to treat a wide variety of diseases by modulating afferent and efferent communication to the heart, lungs, esophagus, stomach, and intestines. Although distal vagal nerve branches, close to end organs, could provide a selective therapeutic approach, these locations are often surgically inaccessible. In contrast, the cervical vagus nerve has been targeted for decades using surgically implantable helix electrodes to treat epileptic seizures and depression; however, to date, clinical implementation of VNS has relied on an electrode with contacts that fully wrap around the nerve, producing non-selective activation of the entire nerve. Here we demonstrate selective cervical VNS using cuff electrodes with multiple contacts around the nerve circumference to target different functional pathways.Approach.These flexible probes were adjusted to the diameter of the nerve using an adhesive hydrogel wrap to create a robust electrode interface. Our approach was verified in a rat model by demonstrating that cervical VNS produces neural activity in the abdominal vagus nerve while limiting effects on the cardiovascular system (i.e. changes in heart rate or blood pressure).Main results.This study demonstrates the potential for selective cervical VNS as a therapeutic approach for modulating distal nerve branches while reducing off target effects.Significance.This methodology could potentially be refined to treat gastrointestinal, metabolic, inflammatory, cardiovascular, and respiratory diseases amenable to vagal neuromodulatory control.


Assuntos
Estimulação do Nervo Vago , Animais , Eletrodos Implantados , Frequência Cardíaca , Hidrogéis , Ratos , Nervo Vago
11.
Front Bioeng Biotechnol ; 9: 796042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988068

RESUMO

Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.

12.
PLoS Comput Biol ; 16(12): e1008350, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326417

RESUMO

Computational models of the musculoskeletal system are scientific tools used to study human movement, quantify the effects of injury and disease, plan surgical interventions, or control realistic high-dimensional articulated prosthetic limbs. If the models are sufficiently accurate, they may embed complex relationships within the sensorimotor system. These potential benefits are limited by the challenge of implementing fast and accurate musculoskeletal computations. A typical hand muscle spans over 3 degrees of freedom (DOF), wrapping over complex geometrical constraints that change its moment arms and lead to complex posture-dependent variation in torque generation. Here, we report a method to accurately and efficiently calculate musculotendon length and moment arms across all physiological postures of the forearm muscles that actuate the hand and wrist. Then, we use this model to test the hypothesis that the functional similarities of muscle actions are embedded in muscle structure. The posture dependent muscle geometry, moment arms and lengths of modeled muscles were captured using autogenerating polynomials that expanded their optimal selection of terms using information measurements. The iterative process approximated 33 musculotendon actuators, each spanning up to 6 DOFs in an 18 DOF model of the human arm and hand, defined over the full physiological range of motion. Using these polynomials, the entire forearm anatomy could be computed in <10 µs, which is far better than what is required for real-time performance, and with low errors in moment arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the number of elements in these autogenerating polynomials does not increase exponentially with increasing muscle complexity; complexity increases linearly instead. Dimensionality reduction using the polynomial terms alone resulted in clusters comprised of muscles with similar functions, indicating the high accuracy of approximating models. We propose that this novel method of describing musculoskeletal biomechanics might further improve the applications of detailed and scalable models to describe human movement.


Assuntos
Biologia Computacional , Fenômenos Fisiológicos Musculoesqueléticos , Fenômenos Biomecânicos , Antebraço/fisiologia , Humanos , Músculo Esquelético/fisiologia
13.
Elife ; 92020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691733

RESUMO

Restoring somatosensory feedback to people with limb amputations is crucial to improve prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation and targeted reinnervation can provide somatotopically relevant sensory feedback. While effective, the surgical procedures required for these techniques remain a major barrier to translatability. Here, we demonstrate in four people with upper-limb amputation that epidural spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand. Over up to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand regardless of time since amputation or level of amputation. Evoked sensations were occasionally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing stimulus amplitude increased the perceived intensity linearly, without increasing area of the sensations. These results demonstrate the potential of SCS as a tool to restore somatosensation after amputations.


Even some of the most advanced prosthetic arms lack an important feature: the ability to relay information about touch or pressure to the wearer. In fact, many people prefer to use simpler prostheses whose cables and harnesses pass on information about tension. However, recent studies suggest that electrical stimulation might give prosthesis users more sensation and better control. After an amputation, the nerves that used to deliver sensory information from the hand still exist above the injury. Stimulating these nerves can help to recreate sensations in the missing limb and improve the control of the prosthesis. Still, this stimulation requires complicated surgical interventions to implant electrodes in or around the nerves. Spinal cord stimulation ­ a technique where a small electrical device is inserted near the spinal cord to stimulate nerves ­ may be an easier alternative. This approach only requires a simple outpatient procedure, and it is routinely used to treat chronic pain conditions. Now, Chandrasekaran, Nanivadekar et al. show that spinal cord stimulation can produce the feeling of sensations in a person's missing hand or arm. In the experiments, four people who had an arm amputation underwent spinal cord stimulation over 29 days. During the stimulation, the participants reported feeling electrical buzzing, vibration, or pressure in their missing limb. Changing the strength of the electric signals delivered to the spinal cord altered the intensity of these sensations. The experiments are a step toward developing better prosthetics that restore some sensation. Further studies are now needed to determine whether spinal cord stimulation would allow people to perform sensory tasks with a prosthetic, for example handling an object that they cannot see.


Assuntos
Amputação/reabilitação , Membros Artificiais , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Retroalimentação Sensorial/fisiologia , Medula Espinal/fisiologia , Percepção do Tato/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Resultado do Tratamento , Estados Unidos
14.
Sci Rep ; 10(1): 8377, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433481

RESUMO

Wrist posture impacts the muscle lengths and moment arms of the extrinsic finger muscles that cross the wrist. As a result, the electromyographic (EMG) activity associated with digit movement at different wrist postures must also change. We sought to quantify the posture-dependence of extrinsic finger muscle activity using bipolar fine-wire electrodes inserted into the extrinsic finger muscles of able-bodied subjects during unrestricted wrist and finger movements across the entire range of motion. EMG activity of all the recorded finger muscles were significantly different (p < 0.05, ANOVA) when performing the same digit movement in five different wrist postures. Depending on the wrist posture, EMG activity changed by up to 70% in individual finger muscles for the same movement, with the highest levels of activity observed in finger extensors when the wrist was extended. Similarly, finger flexors were most active when the wrist was flexed. For the finger flexors, EMG variations with wrist posture were most prominent for index finger muscles, while the EMG activity of all finger extensor muscles were modulated in a similar way across all digits. In addition to comprehensively quantifying the effect of wrist posture on extrinsic finger EMG activity in able-bodied subjects, these results may contribute to designing control algorithms for myoelectric prosthetic hands in the future.


Assuntos
Eletromiografia/métodos , Junção Neuromuscular/fisiologia , Adulto , Algoritmos , Análise de Variância , Fenômenos Biomecânicos , Feminino , Dedos/fisiologia , Humanos , Masculino , Neurofisiologia , Punho/fisiologia
15.
J Neural Eng ; 17(4): 046012, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32434161

RESUMO

OBJECTIVE: Neural interfacing technologies could significantly improve quality of life for people living with the loss of a limb. Both motor commands and sensory feedback must be considered; these complementary systems are segregated from one another in the spinal nerve. APPROACH: The dorsal root ganglion-ventral root (DRG-VR) complex was targeted chronically with floating microelectrode arrays designed to record from motor neuron axons in the VR or stimulate sensory neurons in the DRG. Hematoxylin and eosin and Nissl/Luxol fast blue staining were performed. Characterization of the tissue response in regions of interest and pixel-based image analyses were used to quantify MAC387 (monocytes/macrophages), NF200 (axons), S100 (Schwann cells), vimentin (fibroblasts, endothelial cells, astrocytes), and GLUT1 (glucose transport proteins) reactivity. Implanted roots were compared to non-implanted roots and differences between the VR and DRG examined. MAIN RESULTS: The tissue response associated with chronic array implantation in this peripheral location is similar to that observed in central nervous system locations. Markers of inflammation were increased in implanted roots relative to control roots with MAC387 positive cells distributed throughout the region corresponding to the device footprint. Significant decreases in neuronal density and myelination were observed in both the VR, which contains only neuronal axons, and the DRG, which contains both neuronal axons and cell bodies. Notably, decreases in NF200 in the VR were observed only at implant times less than ten weeks. Observations related to the blood-nerve barrier and tissue integrity suggest that tissue remodeling occurs, particularly in the VR. SIGNIFICANCE: This study was designed to assess the viability of the DRG-VR complex as a site for neural interfacing applications and suggests that continued efforts to mitigate the tissue response will be critical to achieve the overall goal of a long-term, reliable neural interface.


Assuntos
Células Endoteliais , Qualidade de Vida , Animais , Axônios , Gatos , Gânglios Espinais , Microeletrodos
16.
Acta Biomater ; 103: 81-91, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863910

RESUMO

Electrical stimulation of the muscle has been proven efficacious in preventing atrophy and/or reanimating paralyzed muscles. Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes (CNT) with fluorosilicone insulation. The electrode wire has a Young's modulus of 804 (±99) kPa, which better mimics the muscle tissue modulus than conventional stainless steel (SS) electrodes. Additionally, the non-metallic composition enables metal-artifact free CT and MR imaging. These soft wire (SW) electrodes present comparable electrical impedance to SS electrodes of similar geometric surface area, activate muscle at a lower threshold, and maintain stable electrical properties in vivo up to 4 weeks. Histologically, the SW electrodes elicited significantly less fibrotic encapsulation and less IBA-1 positive macrophage accumulation than the SS electrodes at one and three months. Further phenotyping the macrophages with the iNOS (pro-inflammatory) and ARG-1 (pro-healing) markers revealed significantly less presence of pro-inflammatory macrophage around SW implants at one month. By three months, there was a significant increase in pro-healing macrophages (ARG-1) around the SW implants but not around the SS implants. Furthermore, a larger number of AchR clusters closer to SW implants were found at both time points compared to SS implants. These results suggest that a softer implant encourages a more intimate and healthier electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes with fluorosilicone insulation. This elastomeric composite results in an electrode wire with a Young's modulus mimicking that of the muscle tissue, which elicits significantly less foreign body response compared to stainless steel wires. The lack of metal in this composite also enables metal-artifact free MRI and CT imaging.


Assuntos
Elastômeros/química , Eletrodos Implantados , Músculos/fisiologia , Animais , Materiais Biocompatíveis/química , Eletroquímica , Imageamento por Ressonância Magnética , Masculino , Músculos/diagnóstico por imagem , Ratos Sprague-Dawley , Receptores Colinérgicos/metabolismo , Microtomografia por Raio-X
17.
J Neural Eng ; 17(1): 016014, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31648208

RESUMO

OBJECTIVE: We have demonstrated previously that microstimulation in the dorsal root ganglia (DRG) can selectively evoke activity in primary afferent neurons in anesthetized cats. This study describes the results of experiments focused on characterizing the postural effects of DRG microstimulation in awake cats during quiet standing. APPROACH: To understand the parameters of stimulation that can affect these postural shifts, we measured changes in ground reaction forces (GRF) while varying stimulation location and amplitude. Four animals were chronically implanted at the L6 and L7 DRG with penetrating multichannel microelectrode arrays. During each week of testing, we identified electrode channels that recruited primary afferent neurons with fast (80-120 m s-1) and medium (30-75 m s-1) conduction velocities, and selected one channel to deliver current-controlled biphasic stimulation trains during quiet standing. MAIN RESULTS: Postural responses were identified by changes in GRFs and were characterized based on their magnitude and latency. During DRG microstimulation, animals did not exhibit obvious signs of distress or discomfort, which could be indicative of pain or aversion to a noxious sensation. Across 56 total weeks, 13 electrode channels evoked behavioral responses, as detected by a significant change in GRF. Stimulation amplitude modulated the magnitude of the GRF responses for these 13 channels (p  < 0.001). It was not possible to predict whether or not an electrode would drive a behavioral response based on information including conduction velocity, recruitment threshold, or the DRG in which it resided. SIGNIFICANCE: The distinct and repeatable effects on the postural response to low amplitude (<40 µA) DRG microstimulation support that this technique may be an effective way to restore somatosensory feedback after neurological injuries such as amputation.


Assuntos
Gânglios Espinais/fisiologia , Equilíbrio Postural/fisiologia , Vigília/fisiologia , Animais , Gatos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Masculino , Microeletrodos
18.
J Neural Eng ; 17(1): 016011, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31577993

RESUMO

OBJECTIVE: We have shown previously that microstimulation of the lumbar dorsal root ganglia (L5-L7 DRG) using penetrating microelectrodes, selectively recruits distal branches of the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical translation of a DRG somatosensory neural interface, electrodes placed on the epineural surface of the DRG may be a viable path forward. The goal of this study was to evaluate the recruitment properties of epineural electrodes and compare their performance with that of penetrating electrodes. Here, we compare the number of selectively recruited distal nerve branches and the threshold stimulus intensities between penetrating and epineural electrode arrays. APPROACH: Antidromically propagating action potentials were recorded from multiple distal branches of the femoral and sciatic nerves in response to epineural stimulation on 11 ganglia in four cats to quantify the selectivity of DRG stimulation. Compound action potentials (CAPs) were recorded using nerve cuff electrodes implanted around up to nine distal branches of the femoral and sciatic nerve trunks. We also tested stimulation selectivity with penetrating microelectrode arrays implanted into ten ganglia in four cats. A binary search was carried out to identify the minimum stimulus intensity that evoked a response at any of the distal cuffs, as well as whether the threshold response selectively occurred in only a single distal nerve branch. MAIN RESULTS: Stimulation evoked activity in just a single peripheral nerve through 67% of epineural electrodes (35/52) and through 79% of the penetrating microelectrodes (240/308). The recruitment threshold (median = 9.67 nC/phase) and dynamic range of epineural stimulation (median = 1.01 nC/phase) were significantly higher than penetrating stimulation (0.90 nC/phase and 0.36 nC/phase, respectively). However, the pattern of peripheral nerves recruited for each DRG were similar for stimulation through epineural and penetrating electrodes. SIGNIFICANCE: Despite higher recruitment thresholds, epineural stimulation provides comparable selectivity and superior dynamic range to penetrating electrodes. These results suggest that it may be possible to achieve a highly selective neural interface with the DRG without penetrating the epineurium.


Assuntos
Eletrodos Implantados , Desenho de Equipamento/métodos , Gânglios Espinais/fisiologia , Nervos Periféricos/fisiologia , Animais , Gatos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Desenho de Equipamento/instrumentação , Nervo Femoral/fisiologia , Masculino , Microeletrodos , Nervo Isquiático/fisiologia
19.
PLoS One ; 14(10): e0223279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31626659

RESUMO

Although electrogastrography (EGG) could be a critical tool in the diagnosis of patients with gastrointestinal (GI) disease, it remains under-utilized. The lack of spatial and temporal resolution using current EGG methods presents a significant roadblock to more widespread usage. Human and preclinical studies have shown that GI myoelectric electrodes can record signals containing significantly more information than can be derived from abdominal surface electrodes. The current study sought to assess the efficacy of multi-electrode arrays, surgically implanted on the serosal surface of the GI tract, from gastric fundus-to-duodenum, in recording myoelectric signals. It also examines the potential for machine learning algorithms to predict functional states, such as retching and emesis, from GI signal features. Studies were performed using ferrets, a gold standard model for emesis testing. Our results include simultaneous recordings from up to six GI recording sites in both anesthetized and chronically implanted free-moving ferrets. Testing conditions to produce different gastric states included gastric distension, intragastric infusion of emetine (a prototypical emetic agent), and feeding. Despite the observed variability in GI signals, machine learning algorithms, including k-nearest neighbors and support vector machines, were able to detect the state of the stomach with high overall accuracy (>75%). The present study is the first demonstration of machine learning algorithms to detect the physiological state of the stomach and onset of retching, which could provide a methodology to diagnose GI diseases and symptoms such as nausea and vomiting.


Assuntos
Trato Gastrointestinal/fisiopatologia , Aprendizado de Máquina , Modelos Biológicos , Vômito/fisiopatologia , Algoritmos , Animais , Eletromiografia , Furões , Humanos , Lactente , Recém-Nascido , Vômito/diagnóstico , Vômito/etiologia
20.
J Neural Eng ; 17(1): 016019, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31597128

RESUMO

Somatosensory afferent pathways have been a target for neural prostheses that seek to restore sensory feedback from amputated limbs and to recruit muscles paralyzed by neurological injury. These pathways supply inputs to spinal reflex circuits that are necessary for coordinating muscle activity in the lower limb. The dorsal root ganglia (DRG) is a potential site for accessing sensory neurons because DRG microstimulation selectively recruits major nerve branches of the cat hindlimb. Previous DRG microstimulation experiments have been performed in anesthetized animals, but effects on muscle recruitment and behavior in awake animals have not been examined. OBJECTIVE: The objective of the current study was to measure the effects of DRG microstimulation on evoking changes in hindlimb muscle activity during quiet standing. APPROACH: In this study, 32-channel penetrating microelectrode arrays were implanted chronically in the left L6 and L7 DRG of four cats. During each week of testing, one DRG electrode was selected to deliver microstimulation pulse-trains during quiet standing. Electromyographic (EMG) signals were recorded from intramuscular electrodes in ten hindlimb muscles, and ground-reaction forces (GRF) were measured under the foot of the implanted limb. MAIN RESULTS: DRG Microstimulation evoked a mix of excitatory and inhibitory responses across muscles. Response rates were highest when microstimulation was applied on the L7 array, producing more excitatory than inhibitory responses. Response rates for the L6 array were lower, and the composition of responses was more evenly balanced between excitation and inhibition. On approximately one third of testing weeks, microstimulation induced a transient unloading of the hindlimb as indicated by a decrease in GRF. Reciprocal inhibition at the knee was a prevalent response pattern across testing days which contributed to the unloading force on this subset of testing weeks. SIGNIFICANCE: Results show that single-channel microstimulation in the lumbar DRG evokes stereotyped patterns of muscle recruitment in awake animals, demonstrating that even limited sensory input can elicit hindlimb behavior. These findings imply that DRG microstimulation may have utility in neural prosthetic applications aimed at restoring somatosensory feedback and promoting motor function after neurological injury.


Assuntos
Eletrodos Implantados , Potencial Evocado Motor/fisiologia , Gânglios Espinais/fisiologia , Membro Posterior/fisiologia , Vértebras Lombares , Postura/fisiologia , Animais , Gatos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Eletromiografia/instrumentação , Eletromiografia/métodos , Membro Posterior/inervação , Masculino , Microeletrodos , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...