Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 25(6): 911-919, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160820

RESUMO

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.


Assuntos
Doenças Raras/genética , Ceramidase Ácida/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino , Modelos Genéticos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Canais de Potássio/genética , RNA/sangue , RNA/genética , Processamento de RNA/genética , Doenças Raras/sangue , Análise de Sequência de RNA , Sequenciamento Completo do Exoma
2.
J Genet Couns ; 28(2): 213-228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964584

RESUMO

There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.

3.
J Genet Couns ; 28(2): 466-476, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30706981

RESUMO

With the wide adoption of next-generation sequencing (NGS)-based genetic tests, genetic counselors require increased familiarity with NGS technology, variant interpretation concepts, and variant assessment tools. The use of exome and genome sequencing in clinical care has expanded the reach and diversity of genetic testing. Regardless of the setting where genetic counselors are performing variant interpretation or reporting, most of them have learned these skills from colleagues, while on the job. Though traditional, lecture-based learning around these topics is important, there has been growing need for the inclusion of case-based, experiential training of genomics and variant interpretation for genetic counseling students, with the goal of creating a strong foundation in variant interpretation for new genetic counselors, regardless of what area of practice they enter. To address this need, we established a genomics and variant interpretation rotation for Stanford's genetic counseling training program. In response to changes in the genomics landscape, this has now evolved into three unique rotation experiences, each focused on variant interpretation in the context of various genomic settings, including clinical laboratory, research laboratory, and healthy genomic analysis studies. Here, we describe the goals and learning objectives that we have developed for these variant interpretation rotations, and illustrate how these concepts are applied in practice.

4.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478781

RESUMO

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.

5.
Cancer Genet ; 216-217: 10-15, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025582

RESUMO

FLT3 fusions are associated with myeloid and lymphoid neoplasms with eosinophilia. We describe a patient presenting with clinicopathologic features of both chronic eosinophilic leukemia, not otherwise specified (CEL, NOS) and systemic mastocytosis (SM). The bone marrow demonstrated a myeloproliferative neoplasm with eosinophilia and aggregates of atypical mast cells. Cytogenetic analysis revealed a t(13;14)(q12;q32), which was subsequently molecularly characterized as a novel TRIP11-FLT3 rearrangement. A KIT D816V mutation was also identified. The patient rapidly transformed to T-lymphoblastic leukemia/lymphoma and expired shortly after diagnosis. This is the fifth FLT3 fusion gene described in the literature; the presence of both myeloid and lymphoid neoplasms implicates involvement of an early hematopoietic progenitor by rearranged FLT3. We suggest that leukemias and lymphomas with FLT3 fusion genes exhibit similar clinicopathologic features to, and should be included in, the WHO category of "Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2."


Assuntos
Eosinofilia/complicações , Linfoma/complicações , Linfoma/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Proteínas de Fusão Oncogênica/genética , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
G3 (Bethesda) ; 4(3): 389-98, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24374639

RESUMO

The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Bases de Dados Factuais , Internet , Fases de Leitura Aberta , Análise de Sequência de DNA , Interface Usuário-Computador
7.
Haematologica ; 98(11): 1689-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872309

RESUMO

In order to identify novel somatic mutations associated with classic BCR/ABL1-negative myeloproliferative neoplasms, we performed high-coverage genome sequencing of DNA from peripheral blood granulocytes and cultured skin fibroblasts from a patient with MPL W515K-positive primary myelofibrosis. The primary myelofibrosis genome had a low somatic mutation rate, consistent with that observed in similar hematopoietic tumor genomes. Interfacing of whole-genome DNA sequence data with RNA expression data identified three somatic mutations of potential functional significance: i) a nonsense mutation in CARD6, implicated in modulation of NF-kappaB activation; ii) a 19-base pair deletion involving a potential regulatory region in the 5'-untranslated region of BRD2, implicated in transcriptional regulation and cell cycle control; and iii) a non-synonymous point mutation in KIAA0355, an uncharacterized protein. Additional mutations in three genes (CAP2, SOX30, and MFRP) were also evident, albeit with no support for expression at the RNA level. Re-sequencing of these six genes in 178 patients with polycythemia vera, essential thrombocythemia, and myelofibrosis did not identify recurrent somatic mutations in these genes. Finally, we describe methods for reducing false-positive variant calls in the analysis of hematologic malignancies with a low somatic mutation rate. This trial is registered with ClinicalTrials.gov (NCT01108159).


Assuntos
Estudos de Associação Genética/métodos , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Mutação/genética , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Células Cultivadas , Humanos , Masculino , Pessoa de Meia-Idade
8.
Nucleic Acids Res ; 40(Database issue): D700-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110037

RESUMO

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Saccharomyces cerevisiae/genética , Genes Fúngicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Software , Terminologia como Assunto
9.
Nucleic Acids Res ; 38(Database issue): D433-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906697

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Mutação , Saccharomyces cerevisiae/genética , Biologia Computacional/tendências , DNA Fúngico , Bases de Dados Genéticas , Bases de Dados de Proteínas , Genes Fúngicos , Armazenamento e Recuperação da Informação/métodos , Internet , Fenótipo , Estrutura Terciária de Proteína , Software
10.
Nucleic Acids Res ; 36(Database issue): D577-81, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17982175

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current.


Assuntos
Bases de Dados Genéticas , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biologia Computacional , Genoma Fúngico , Genômica , Internet , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Interface Usuário-Computador , Vocabulário Controlado
11.
Nucleic Acids Res ; 35(Database issue): D468-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17142221

RESUMO

The recent explosion in protein data generated from both directed small-scale studies and large-scale proteomics efforts has greatly expanded the quantity of available protein information and has prompted the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) to enhance the depth and accessibility of protein annotations. In particular, we have expanded ongoing efforts to improve the integration of experimental information and sequence-based predictions and have redesigned the protein information web pages. A key feature of this redesign is the development of a GBrowse-derived interactive Proteome Browser customized to improve the visualization of sequence-based protein information. This Proteome Browser has enabled SGD to unify the display of hidden Markov model (HMM) domains, protein family HMMs, motifs, transmembrane regions, signal peptides, hydropathy plots and profile hits using several popular prediction algorithms. In addition, a physico-chemical properties page has been introduced to provide easy access to basic protein information. Improvements to the layout of the Protein Information page and integration of the Proteome Browser will facilitate the ongoing expansion of sequence-specific experimental information captured in SGD, including post-translational modifications and other user-defined annotations. Finally, SGD continues to improve upon the availability of genetic and physical interaction data in an ongoing collaboration with BioGRID by providing direct access to more than 82,000 manually-curated interactions.


Assuntos
Bases de Dados de Proteínas , Proteômica , Proteínas de Saccharomyces cerevisiae/química , Gráficos por Computador , Genoma Fúngico , Internet , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de Proteína , Interface Usuário-Computador
12.
Yeast ; 23(12): 857-65, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17001629

RESUMO

The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Sequência de Bases , Cromossomos Fúngicos/genética , Bases de Dados de Ácidos Nucleicos , Dados de Sequência Molecular , Fases de Leitura Aberta
13.
Nucleic Acids Res ; 34(Database issue): D442-5, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381907

RESUMO

Sequencing and annotation of the entire Saccharomyces cerevisiae genome has made it possible to gain a genome-wide perspective on yeast genes and gene products. To make this information available on an ongoing basis, the Saccharomyces Genome Database (SGD) (http://www.yeastgenome.org/) has created the Genome Snapshot (http://db.yeastgenome.org/cgi-bin/genomeSnapShot.pl). The Genome Snapshot summarizes the current state of knowledge about the genes and chromosomal features of S.cerevisiae. The information is organized into two categories: (i) number of each type of chromosomal feature annotated in the genome and (ii) number and distribution of genes annotated to Gene Ontology terms. Detailed lists are accessible through SGD's Advanced Search tool (http://db.yeastgenome.org/cgi-bin/search/featureSearch), and all the data presented on this page are available from the SGD ftp site (ftp://ftp.yeastgenome.org/yeast/).


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , Gráficos por Computador , Genômica , Internet , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/fisiologia , Interface Usuário-Computador
14.
Nucleic Acids Res ; 34(Database issue): D500-3, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381920

RESUMO

We have developed a web-based resource (available at www.ciliate.org) for researchers studying the model ciliate organism Tetrahymena thermophila. Employing the underlying database structure and programming of the Saccharomyces Genome Database, the Tetrahymena Genome Database (TGD) integrates the wealth of knowledge generated by the Tetrahymena research community about genome structure, genes and gene products with the newly sequenced macronuclear genome determined by The Institute for Genomic Research (TIGR). TGD provides information curated from the literature about each published gene, including a standardized gene name, a link to the genomic locus in our graphical genome browser, gene product annotations utilizing the Gene Ontology, links to published literature about the gene and more. TGD also displays automatic annotations generated for the gene models predicted by TIGR. A variety of tools are available at TGD for searching the Tetrahymena genome, its literature and information about members of the research community.


Assuntos
Bases de Dados Genéticas , Genoma de Protozoário , Tetrahymena thermophila/genética , Animais , Genômica , Internet , Modelos Genéticos , Proteínas de Protozoários/genética , Software , Interface Usuário-Computador
15.
Nucleic Acids Res ; 33(Database issue): D374-7, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608219

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is a scientific database of gene, protein and genomic information for the yeast Saccharomyces cerevisiae. SGD has recently developed two new resources that facilitate nucleotide and protein sequence comparisons between S.cerevisiae and other organisms. The Fungal BLAST tool provides directed searches against all fungal nucleotide and protein sequences available from GenBank, divided into categories according to organism, status of completeness and annotation, and source. The Model Organism BLASTP Best Hits resource displays, for each S.cerevisiae protein, the single most similar protein from several model organisms and presents links to the database pages of those proteins, facilitating access to curated information about potential orthologs of yeast proteins.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Software , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência
16.
Brief Bioinform ; 5(1): 9-22, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15153302

RESUMO

A scientific database can be a powerful tool for biologists in an era where large-scale genomic analysis, combined with smaller-scale scientific results, provides new insights into the roles of genes and their products in the cell. However, the collection and assimilation of data is, in itself, not enough to make a database useful. The data must be incorporated into the database and presented to the user in an intuitive and biologically significant manner. Most importantly, this presentation must be driven by the user's point of view; that is, from a biological perspective. The success of a scientific database can therefore be measured by the response of its users - statistically, by usage numbers and, in a less quantifiable way, by its relationship with the community it serves and its ability to serve as a model for similar projects. Since its inception ten years ago, the Saccharomyces Genome Database (SGD) has seen a dramatic increase in its usage, has developed and maintained a positive working relationship with the yeast research community, and has served as a template for at least one other database. The success of SGD, as measured by these criteria, is due in large part to philosophies that have guided its mission and organisation since it was established in 1993. This paper aims to detail these philosophies and how they shape the organisation and presentation of the database.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Genômica , Disseminação de Informação , Armazenamento e Recuperação da Informação , Internet
17.
Nucleic Acids Res ; 32(Database issue): D311-4, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681421

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/), a scientific database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, has recently developed several new resources that allow the comparison and integration of information on a genome-wide scale, enabling the user not only to find detailed information about individual genes, but also to make connections across groups of genes with common features and across different species. The Fungal Alignment Viewer displays alignments of sequences from multiple fungal genomes, while the Sequence Similarity Query tool displays PSI-BLAST alignments of each S.cerevisiae protein with similar proteins from any species whose sequences are contained in the non-redundant (nr) protein data set at NCBI. The Yeast Biochemical Pathways tool integrates groups of genes by their common roles in metabolism and displays the metabolic pathways in a graphical form. Finally, the Find Chromosomal Features search interface provides a versatile tool for querying multiple types of information in SGD.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Humanos , Armazenamento e Recuperação da Informação , Internet , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência , Software
18.
Nucleic Acids Res ; 31(1): 216-8, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12519985

RESUMO

The Saccharomyces Genome Database (SGD: http://genome-www.stanford.edu/Saccharomyces/) has recently developed new resources to provide more complete information about proteins from the budding yeast Saccharomyces cerevisiae. The PDB Homologs page provides structural information from the Protein Data Bank (PDB) about yeast proteins and/or their homologs. SGD has also created a resource that utilizes the eMOTIF database for motif information about a given protein. A third new resource is the Protein Information page, which contains protein physical and chemical properties, such as molecular weight and hydropathicity scores, predicted from the translated ORF sequence.


Assuntos
Bases de Dados de Proteínas , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Modelos Moleculares , Peso Molecular , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales , Homologia de Sequência de Aminoácidos
20.
Nucleic Acids Res ; 30(1): 69-72, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11752257

RESUMO

The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.


Assuntos
Bases de Dados Genéticas , Genes Fúngicos , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Animais , Mapeamento Cromossômico , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação , Internet , Fisiologia Comparada , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA