Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571840

RESUMO

Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal impairments; however, an increasing number of studies indicates that H. pylori infection might be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases. In this review, we focused on the nervous system and aimed to summarize the findings regarding H. pylori infection and its involvement in the induction/progression of neurological disorders. Neurological impairments induced by H. pylori infection are primarily due to impairments in the gut-brain axis (GBA) and to an altered gut microbiota facilitated by H. pylori colonization. Currently, regarding a potential relationship between Helicobacter infection and neurological disorders, most of the studies are mainly focused on H. pylori.

2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443574

RESUMO

Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Nanopartículas Metálicas , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Técnicas de Química Sintética , Química Verde , Picratos/química
3.
Neurosci Biobehav Rev ; 129: 117-132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339708

RESUMO

The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Mercúrio , Oligoelementos , Criança , Humanos , Zinco
4.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353137

RESUMO

The 2,2-diphenyl-1-picrylhydrazyl (DPPH)-reverse phase (RP)-HPLC-diode array detector (DAD) method was tested on standard antioxidants (AOs), i.e., reduced glutathione (GSH), ascorbic acid (vitamin C), and alcoholic extracts of A. podagraria L. An elaborated HPLC procedure enabled the simultaneous measurement of the redox couple DPPH-R (2,2-diphenyl-1-picrylhydrazyl radical)/DPPH-H (2,2-diphenyl-1-picrylhydrazine). Both forms were fully separated (Rs = 2.30, α = 1.65) on a Zorbax Eclipse XDB-C18 column eluted with methanol-water (80:20, v/v) and detected at different wavelengths in the range of 200-600 nm. The absorbance increases of the DPPH-H as well as the DPPH-R peak inhibition were measured at different wavelengths in visible and UV ranges. The chromatographic method was optimized, according to reaction time (slow, fast kinetics), the linearity range of DPPH radical depending on the detection conditions as well as the kind of the investigated antioxidants (reference chemicals and the ground elder prepared from fresh and dry plants). The scavenging capacity was expressed by the use of percentage of peak inhibition and the IC50 parameters. The evaluated extracts displayed antioxidant activity, higher than 20% inhibition against 350 µM DPPH free radical. The results show that extract prepared from dry plants in the ultrasonic bath exhibits the highest antioxidant potential (IC50 = 64.74 ± 0.22 µL/mL).


Assuntos
Antioxidantes/farmacologia , Apiaceae/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
5.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872533

RESUMO

Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.


Assuntos
Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Biodegradação Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...