*Phys Rev Lett ; 127(23): 237701, 2021 Dec 03.*

##### RESUMO

Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this problem, we here propose and analyze a dynamic Cooper pair splitter that produces a noiseless and regular flow of spin-entangled electrons. The Cooper pair splitter is based on a superconductor coupled to quantum dots, whose energy levels are tuned in and out of resonance to control the splitting process. We identify the optimal operating conditions for which exactly one Cooper pair is split per period of the external drive and the flow of entangled electrons becomes noiseless. To characterize the regularity of the Cooper pair splitter in the time domain, we analyze the g^{(2)} function of the output currents and the distribution of waiting times between split Cooper pairs. Our proposal is feasible using current technology, and it paves the way for dynamic quantum information processing with spin-entangled electrons.

*Nat Commun ; 12(1): 6358, 2021 Nov 04.*

##### RESUMO

Controlled generation and detection of quantum entanglement between spatially separated particles constitute an essential prerequisite both for testing the foundations of quantum mechanics and for realizing future quantum technologies. Splitting of Cooper pairs from a superconductor provides entangled electrons at separate locations. However, experimentally accessing the individual split Cooper pairs constitutes a major unresolved issue as they mix together with electrons from competing processes. Here, we overcome this challenge with the first real-time observation of the splitting of individual Cooper pairs, enabling direct access to the time-resolved statistics of Cooper pair splitting. We determine the correlation statistics arising from two-electron processes and find a pronounced peak that is two orders of magnitude larger than the background. Our experiment thereby allows to unambiguously pinpoint and select split Cooper pairs with 99% fidelity. These results open up an avenue for performing experiments that tap into the spin-entanglement of split Cooper pairs.

*Entropy (Basel) ; 23(6)2021 Jun 10.*

##### RESUMO

The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach-Zehnder interferometer.

*Sci Adv ; 7(2)2021 Jan.*

##### RESUMO

Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.

*Phys Rev Lett ; 127(9): 096803, 2021 Aug 27.*

##### RESUMO

Distributions of electron waiting times have been measured in several recent experiments and have been shown to provide complementary information compared with what can be learned from the electric current fluctuations. Existing theories, however, are restricted to either weakly coupled nanostructures or phase-coherent transport in mesoscopic conductors. Here, we consider an interacting quantum dot and develop a real-time diagrammatic theory of waiting time distributions that can treat the interesting regime, in which both interaction effects and higher-order tunneling processes are important. Specifically, we find that our quantum-mechanical theory captures higher-order tunneling processes at low temperatures, which are not included in a classical description, and which dramatically affect the waiting times by allowing fast tunneling processes inside the Coulomb blockade region. Our work paves the way for systematic investigations of temporal fluctuations in interacting quantum systems, for example close to a Kondo resonance or in a Luttinger liquid.

*Phys Rev Lett ; 124(15): 150603, 2020 Apr 17.*

##### RESUMO

Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can be nonzero even in the absence of a bias. However, as the driving speed is increased, nonadiabatic excitations gradually reduce the pumped charge, thereby limiting the maximal applicable driving frequencies. To circumvent this problem, we here extend the concept of shortcuts to adiabaticity to construct a control protocol which enables geometric pumping well beyond the adiabatic regime. Our protocol allows for an increase, by more than an order of magnitude, in the driving frequencies, and the method is also robust against moderate fluctuations of the control field. We provide a geometric interpretation of the control protocol and analyze the thermodynamic cost of implementing it. Our findings can be realized using current technology and potentially enable fast pumping of charge or heat in quantum dots, as well as in other stochastic systems from physics, chemistry, and biology.

*Phys Rev Lett ; 122(23): 230602, 2019 Jun 14.*

##### RESUMO

We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations based on a recent theory describing the exact first-passage-time distributions for any nonequilibrium stationary Markov process. We also derive a simple analytical approximation for the first-passage-time distribution, which takes into account the non-Gaussian statistics of the electron transport, and show that it describes the experimental distributions with high accuracy. This universal approximation describes a wide class of stochastic processes, and can be used beyond the context of mesoscopic charge transport. In addition, we verify experimentally a fluctuation relation between the first-passage-time distributions for positive and negative thresholds.

*Sci Rep ; 8(1): 16828, 2018 Nov 15.*

##### RESUMO

We investigate the waiting time distributions (WTDs) of superconducting hybrid junctions, considering both conventional and topologically nontrivial superconductors hosting Majorana bound states at their edges. To this end, we employ a scattering matrix formalism that allows us to evaluate the waiting times between the transmissions and reflections of electrons or holes. Specifically, we analyze normal-metal-superconductor (NIS) junctions and NISIN junctions, where Cooper pairs are spatially split into different leads. The distribution of waiting times is sensitive to the simultaneous reflection of electrons and holes, which is enhanced by the zero-energy state in topological superconductors. For the NISIN junctions, the WTDs of trivial superconductors feature a sharp dependence on the applied voltage, while for topological ones they are mostly independent of it. This particular voltage dependence is again connected to the presence of topological edge states, showing that WTDs are a promising tool for identifying topological superconductivity.

*Phys Rev Lett ; 120(8): 087701, 2018 Feb 23.*

##### RESUMO

Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

*Phys Rev E ; 97(1-1): 012115, 2018 Jan.*

##### RESUMO

The complex zeros of partition functions were originally investigated by Lee and Yang to explain the behavior of condensing gases. Since then, Lee-Yang zeros have become a powerful tool to describe phase transitions in interacting systems. Today, Lee-Yang zeros are no longer just a theoretical concept; they have been determined in recent experiments. In one approach, the Lee-Yang zeros are extracted from the high cumulants of thermodynamic observables at finite size. Here we employ this method to investigate a phase transition in a molecular zipper. From the energy fluctuations in small zippers, we can predict the temperature at which a phase transition occurs in the thermodynamic limit. Even when the system does not undergo a sharp transition, the Lee-Yang zeros carry important information about the large-deviation statistics and its symmetry properties. Our work suggests an interesting duality between fluctuations in small systems and their phase behavior in the thermodynamic limit. These predictions may be tested in future experiments.

*Phys Rev Lett ; 118(18): 180601, 2017 May 05.*

##### RESUMO

Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros-complex singularities of the free energy in systems of finite size-have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

*Phys Rev Lett ; 117(14): 146801, 2016 Sep 30.*

##### RESUMO

We propose a dynamical scheme for measuring the full-counting statistics in a mesoscopic conductor using an electronic Mach-Zehnder interferometer. The conductor couples capacitively to one arm of the interferometer and causes a phase shift which is proportional to the number of transferred charges. Importantly, the full-counting statistics can be obtained from average current measurements at the outputs of the interferometer. The counting field can be controlled by varying the time delay between two separate voltage signals applied to the conductor and the interferometer, respectively. As a specific application, we consider measuring the entanglement entropy generated by partitioning electrons on a quantum point contact. Our scheme is robust against moderate environmental dephasing and may be realized thanks to recent advances in gigahertz quantum electronics.

*Phys Rev Lett ; 115(21): 216803, 2015 Nov 20.*

##### RESUMO

We predict a bistability in the photon emission from a solid-state single-atom laser comprising a microwave cavity coupled to a voltage-biased double quantum dot. To demonstrate that the single-atom laser is bistable, we evaluate the photon emission statistics and show that the distribution takes the shape of a tilted ellipse. The switching rates of the bistability can be extracted from the electrical current and the shot noise in the quantum dots. This provides a means to control the photon emission statistics by modulating the electronic transport in the quantum dots. Our prediction is robust against moderate electronic decoherence and dephasing and is important for current efforts to realize single-atom lasers with gate-defined quantum dots as the gain medium.

*Phys Rev Lett ; 112(14): 146801, 2014 Apr 11.*

##### RESUMO

We present a Floquet scattering theory of electron waiting time distributions in periodically driven quantum conductors. We employ a second-quantized formulation that allows us to relate the waiting time distribution to the Floquet scattering matrix of the system. As an application we evaluate the electron waiting times for a quantum point contact, modulating either the applied voltage (external driving) or the transmission probability (internal driving) periodically in time. Lorentzian-shaped voltage pulses are of particular interest as they lead to the emission of clean single-particle excitations as recently demonstrated experimentally. The distributions of waiting times provide us with a detailed characterization of the dynamical properties of the quantum-coherent conductor in addition to what can be obtained from the shot noise or the full counting statistics.

*Phys Rev Lett ; 112(7): 076803, 2014 Feb 21.*

##### RESUMO

We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum-dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.

*Phys Rev Lett ; 112(3): 036801, 2014 Jan 24.*

##### RESUMO

We employ a single-charge counting technique to measure the full counting statistics of Andreev events in which Cooper pairs are either produced from electrons that are reflected as holes at a superconductor-normal-metal interface or annihilated in the reverse process. The full counting statistics consists of quiet periods with no Andreev processes, interrupted by the tunneling of a single electron that triggers an avalanche of Andreev events giving rise to strongly super-Poissonian distributions.

*Phys Rev E Stat Nonlin Soft Matter Phys ; 90(6): 062128, 2014 Dec.*

##### RESUMO

We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

*Phys Rev E Stat Nonlin Soft Matter Phys ; 88(1): 012119, 2013 Jul.*

##### RESUMO

We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.