Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 12(35): 39074-39081, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805928


Catalytic systems whose properties can be systematically tuned via changes in synthesis conditions are highly desirable for the next-generation catalyst design and optimization. Herein, we present a two-dimensional (2D) conductive metal-organic framework consisting of M-N4 units (M = Ni, Cu) and a hexaaminobenzene (HAB) linker as a catalyst for the oxygen reduction reaction. By varying synthetic conditions, we prepared two Ni-HAB catalysts with different crystallinities, resulting in catalytic systems with different electric conductivities, electrochemical activity, and stability. We show that crystallinity has a positive impact on conductivity and demonstrate that this improved crystallinity/conductivity improves the catalytic performance of our model system. Additionally, density functional theory simulations were performed to probe the origin of M-HAB's catalytic activity, and they suggest that M-HAB's organic linker acts as the active site with the role of the metal being to modulate the linker sites' binding strength.

ACS Appl Mater Interfaces ; 11(37): 34059-34066, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31442022


Multimetallic Ir-based systems offer significant opportunities for enhanced oxygen evolution electrocatalysis by modifying the electronic and geometric properties of the active catalyst. Herein, a systematic investigation of bimetallic Ir-based thin films was performed to identify activity and stability trends across material systems for the oxygen evolution reaction (OER) in acidic media. Electron beam evaporation was used to co-deposit metallic films of Ir, IrSn2, IrCr, IrTi, and IrNi. The electrocatalytic activity of the electrochemically oxidized alloys was found to increase in the following order: IrTi < IrSn2 < Ir ∼ IrNi < IrCr. The IrCr system demonstrates two times the catalytic activity of Ir at 1.65 V versus RHE. Density functional theory calculations suggest that this enhancement is due to Cr active sites that have improved oxygen binding energetics compared to those of pure Ir oxide. This work identifies IrCr as a promising new catalyst system that facilitates reduced precious metal loadings for acid-based OER catalysis.

J Phys Chem B ; 120(32): 7906-19, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27447741


Select ionic liquids (ILs) dissolve significant quantities of cellulose through disruption and solvation of inter- and intramolecular hydrogen bonds. In this study, thermodynamic solid-liquid equilibrium was measured with microcrystalline cellulose in a model IL, 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIm][DEP]) and mixtures with protic antisolvents and aprotic cosolvents between 40 and 120 °C. The solubility of cellulose in pure [EMIm][DEP] exhibits an asymptotic maximum of approximately 20 mass % above 100 °C. Solubility studies conducted on antisolvent mixtures with [EMIm][DEP] and [BMIm][Cl] indicate that protic solvents, ethanol, methanol, and water, significantly reduce the cellulose capacity of IL mixtures by 38-100% even at small antisolvent loadings (<5 mass %). Alternatively, IL-aprotic cosolvent (dimethyl sulfoxide, dimethylformamide, and 1,3-dimethyl-2-imidazolidinone) mixtures at mass ratios up to 1:1 enhance cellulose dissolution by 20-60% compared to pure [EMIm][DEP] at select temperatures. Interactions between the IL and molecular solvents were investigated by Kamlet-Taft solvatochromic analysis, FTIR, and NMR spectroscopy. The results indicate that preferential solvation of the IL cation and anion by co- and antisolvents impact the ability of IL ions to interact with cellulose thus affecting the cellulose dissolution capacity of IL-solvent mixtures.

Celulose/química , Líquidos Iônicos/química , Solventes/química , Celulose/metabolismo , Ligação de Hidrogênio , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Viscosidade