Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 2659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798588

RESUMO

Background: Goodpasture's disease (GP) is mediated by autoantibodies that bind the glomerular and alveolar basement membrane, causing rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. The autoantibodies bind neoepitopes formed upon disruption of the quaternary structure of α345NC1 hexamer, a critical structural domain of α345 collagen IV scaffolds. Hexamer disruption leads to a conformational changes that transitions α3 and α5NC1 subunits into immunogens, however, the trigger remains unknown. This contrasts with another anti-GBM disease, Alports' post-transplant nephritis (APTN), where the pathogenic alloantibody binds directly to native NC1 hexamer. The current report includes the first study of antigenic specificity and allo-incompatability in anti-GBM disease occurring after allogeneic haematopoietic stem cell transplant (HSCT). Results: The anti-GBM antibodies were found to be directed predominantly against the EA epitope of the α3 NC1 monomer of collagen IV and developed rapidly in patient serum reaching peak level within 5 weeks. Autoantibody binding to native α345NC1 hexamer was minimal; however, binding was greatly increased upon dissociation of the native hexamer. There were no polymorphic genetic differences between donor and recipient collagen IV genes which would be predicted to cause a significant NC1 conformational change or to provide a target for antibody binding. Both patient and donor possessed the Goodpasture's susceptibility HLA-allele DRB1 * 1501. Conclusions: The current report includes the first in-depth study of allo-incompatability and antigenic specificity in anti-GBM disease occurring after allogeneic haematopoietic stem cell transplant (HSCT). No polymorphic genetic differences were identified between donor and recipient collagen IV genes which would be predicted to provide a target for antibody binding. Furthermore, autoantibody binding to native α345NC1 hexamer was minimal, increasing greatly upon dissociation of the native hexamer, resembling wild-type GP diseases and marking this as the first example of a post-HSCT conformeropathy.

2.
J Am Soc Nephrol ; 30(10): 1953-1967, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31488606

RESUMO

BACKGROUND: Pathologists use visual classification of glomerular lesions to assess samples from patients with diabetic nephropathy (DN). The results may vary among pathologists. Digital algorithms may reduce this variability and provide more consistent image structure interpretation. METHODS: We developed a digital pipeline to classify renal biopsies from patients with DN. We combined traditional image analysis with modern machine learning to efficiently capture important structures, minimize manual effort and supervision, and enforce biologic prior information onto our model. To computationally quantify glomerular structure despite its complexity, we simplified it to three components consisting of nuclei, capillary lumina and Bowman spaces; and Periodic Acid-Schiff positive structures. We detected glomerular boundaries and nuclei from whole slide images using convolutional neural networks, and the remaining glomerular structures using an unsupervised technique developed expressly for this purpose. We defined a set of digital features which quantify the structural progression of DN, and a recurrent network architecture which processes these features into a classification. RESULTS: Our digital classification agreed with a senior pathologist whose classifications were used as ground truth with moderate Cohen's kappa κ = 0.55 and 95% confidence interval [0.50, 0.60]. Two other renal pathologists agreed with the digital classification with κ1 = 0.68, 95% interval [0.50, 0.86] and κ2 = 0.48, 95% interval [0.32, 0.64]. Our results suggest computational approaches are comparable to human visual classification methods, and can offer improved precision in clinical decision workflows. We detected glomerular boundaries from whole slide images with 0.93±0.04 balanced accuracy, glomerular nuclei with 0.94 sensitivity and 0.93 specificity, and glomerular structural components with 0.95 sensitivity and 0.99 specificity. CONCLUSIONS: Computationally derived, histologic image features hold significant diagnostic information that may augment clinical diagnostics.

3.
J Am Soc Nephrol ; 30(9): 1605-1624, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31383731

RESUMO

BACKGROUND: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS: To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS: We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and ß-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS: These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.

4.
J Am Soc Nephrol ; 30(9): 1659-1673, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292196

RESUMO

BACKGROUND: Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury. METHODS: To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines. RESULTS: In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells. CONCLUSIONS: These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.

5.
Kidney Int ; 96(1): 34-36, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31229047
6.
Pediatr Nephrol ; 34(11): 2351-2360, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31230128

RESUMO

BACKGROUND: Although high-density lipoprotein (HDL) modulates many cell types in the cardiovascular system, little is known about HDL in the kidney. We assessed urinary excretion of apolipoprotein AI (apoAI), the main protein in HDL. METHODS: We enrolled 228 children with various kidney disorders and 40 controls. Urinary apoAI, albumin, and other markers of kidney damage were measured using ELISA, apoAI isoforms with Western blot, and renal biopsies stained for apoAI. RESULTS: Patients followed in nephrology clinic had elevated urinary apoAI vs. controls (median 0.074 µg/mg; interquartile range (IQR) 0.0160-0.560, vs. 0.019 µg/mg; IQR 0.004-0.118, p < 0.001). Patients with tubulopathies, renal dysplasia/congenital anomalies of the kidney and urogenital tract, glomerulonephritis, and nephrotic syndrome (NS) in relapse had the greatest elevations (p ≤ 0.01). Patients with NS in remission, nephrolithiasis, polycystic kidney disease, transplant, or hypertension were not different from controls. Although all NS in relapse had higher apoAI excretion than in remission (0.159 vs. 0.0355 µg/mg, p = 0.01), this was largely driven by patients with focal segmental glomerulosclerosis (FSGS). Many patients, especially with FSGS, had increased urinary apoAI isoforms. Biopsies from FSGS patients showed increased apoAI staining at proximal tubule brush border, compared to diffuse cytoplasmic distribution in minimal change disease. CONCLUSIONS: Children with kidney disease have variably increased urinary apoAI depending on underlying disease. Urine apoAI is particularly elevated in diseases affecting proximal tubules. Kidney disease is also associated with high molecular weight (HMW) apoAI isoforms in urine, especially FSGS. Whether abnormal urinary apoAI is a marker or contributor to renal disease awaits further study.

7.
Kidney Int ; 96(3): 581-592, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227146

RESUMO

Fibrillary glomerulonephritis is a glomerular disease historically defined by glomerular deposition of Congo red-negative, randomly oriented straight fibrils that lack a hollow center and stain with antisera to immunoglobulins. It was initially considered to be an idiopathic disease, but recent studies highlighted association in some cases with autoimmune disease, malignant neoplasm, or hepatitis C viral infection. Prognosis is poor with nearly half of patients progressing to end-stage renal disease within 4 years. There is currently no effective therapy, aside from kidney transplantation, which is associated with disease recurrence in a third of cases. The diagnosis has been hampered by the lack of biomarkers for the disease and the necessity of electron microscopy for diagnosis, which is not widely available. Recently, through the use of laser microdissection-assisted liquid chromatography-tandem mass spectrometry, a novel biomarker of fibrillary glomerulonephritis, DnaJ homolog subfamily B member 9, has been identified. Immunohistochemical studies confirmed the high sensitivity and specificity of DnaJ homolog subfamily B member 9 for this disease; dual immunofluorescence showed its colocalization with IgG in glomeruli; and immunoelectron microscopy revealed its localization to individual fibrils of fibrillary glomerulonephritis. The identification of this tissue biomarker has already entered clinical practice and undoubtingly will improve the diagnosis of this rare disease, particularly in developing countries where electron microscopy is less available. Future research is needed to determine whether DnaJ homolog subfamily B member 9 is an autoantigen or just an associated protein in fibrillary glomerulonephritis, whether it can serve as a noninvasive biomarker, and whether therapies that target this protein are effective in improving prognosis.

8.
Nephrol Dial Transplant ; 34(12): 2042-2050, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071225

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1). METHODS: Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later. RESULTS: GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor ß (TGF-ß) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF ß and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice. CONCLUSION: These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.

9.
J Histochem Cytochem ; 67(9): 623-632, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31116068

RESUMO

Focal segmental glomerulosclerosis (FSGS) presents with scar in parts of some glomeruli and often progresses to global and diffuse glomerulosclerosis. Podocyte injury is the initial target in primary FSGS, induced by a circulating factor. Several gene variants, for example, APOL1, are associated with increased susceptibility to FSGS. Primary FSGS may be due to genetic mutation in key podocyte genes. Increased work stress after loss of nephrons, epigenetic mechanisms, and various profibrotic pathways can contribute to progressive sclerosis, regardless of the initial injury. The progression of FSGS lesions also involves crosstalk between podocytes and other kidney cells, such as parietal epithelial cells, glomerular endothelial cells, and even tubular epithelial cells. New insights related to these mechanisms could potentially lead to new therapeutic strategies to prevent progression of FSGS.

10.
Lab Invest ; 99(8): 1107-1116, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31019291

RESUMO

High-density lipoprotein (HDL) and its main protein, apolipoprotein AI (apoAI), have established benefits in various cells, but whether these cytoprotective effects of HDL pertain to renal cells is unclear. We investigated the in vitro consequences of exposing damaged podocytes to normal apoAI, HDL, and apoAI mimetic (L-4F), and the in vivo effects of L-4F on kidney and atherosclerotic injury in a podocyte-specific injury model of proteinuria. In vitro, primary mouse podocytes were injured by puromycin aminonucleoside (PAN). Cellular viability, migration, production of reactive oxygen species (ROS), apoptosis, and the underlying signaling pathway were assessed. In vivo, we used a proteinuric model, Nphs1-hCD25 transgenic (NEP25+) mice, which express human CD25 on podocytes. Podocyte injury was induced by using immunotoxin (LMB2) and generated a proteinuric atherosclerosis model, NEP25+:apoE-/- mice, was generated by mating apoE-deficient (apoE-/-) mice with NEP25+ mice. Animals received L-4F or control vehicle. Renal function, podocyte injury, and atherosclerosis were assessed. PAN reduced podocyte viability, migration, and increased ROS production, all significantly lessened by apoAI, HDL, and L-4F. L-4F attenuated podocyte apoptosis and diminished PAN-induced inactivation of Janus family protein kinase-2/signal transducers and activators of transcription 3. In NEP25+ mice, L-4F significantly lessened overall proteinuria, and preserved podocyte expression of synaptopodin and cell density. Proteinuric NEP25+:apoE-/- mice had more atherosclerosis than non-proteinuric apoE-/- mice, and these lesions were significantly decreased by L-4F. Normal human apoAI, HDL, and apoAI mimetic protect against podocyte damage. ApoAI mimetic provides in vivo beneficial effects on podocytes that culminate in reduced albuminuria and atherosclerosis. The results suggest supplemental apoAI/apoAI mimetic may be a novel candidate to lessen podocyte damage and its complications.

11.
Kidney Int ; 95(4): 846-858, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30770218

RESUMO

Recent human genetic studies have suggested an intriguing link between ciliary signaling defects and altered DNA damage responses in nephronophthisis (NPH) and related ciliopathies. However, the molecular mechanism and the role of altered DNA damage response in kidney degeneration and fibrosis have remained elusive. We recently identified the kinase-regulated DNA damage response target Apoptosis Antagonizing Transcription Factor (AATF) as a master regulator of the p53 response. Here, we characterized the phenotype of mice with genetic deletion of Aatf in tubular epithelial cells. Mice were born without an overt phenotype, but gradually developed progressive kidney disease. Histology was notable for severe tubular atrophy and interstitial fibrosis as well as cysts at the corticomedullary junction, hallmarks of human nephronophthisis. Aatf deficiency caused ciliary defects as well as an accumulation of DNA double strand breaks. In addition to its role as a p53 effector, we found that AATF suppressed RNA:DNA hybrid (R loop) formation, a known cause of DNA double strand breaks, and enabled DNA double strand break repair in vitro. Genome-wide transcriptomic analysis of Aatf deficient tubular epithelial cells revealed several deregulated pathways that could contribute to the nephronophthisis phenotype, including alterations in the inflammatory response and anion transport. These results suggest that AATF is a regulator of primary cilia and a modulator of the DNA damage response, connecting two pathogenetic mechanisms in nephronophthisis and related ciliopathies.

12.
Arthritis Rheumatol ; 71(6): 964-971, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30614663

RESUMO

OBJECTIVE: To generate a core set of items to develop classification criteria for scleroderma renal crisis (SRC) using consensus methodology. METHODS: An international, multidisciplinary panel of experts was invited to participate in a 3-round Delphi exercise developed using a survey based on items identified by a scoping review. In round 1, participants were asked to identify omissions and clarify ambiguities regarding the items in the survey. In round 2, participants were asked to rate the validity and feasibility of the items using Likert-type scales ranging from 1 to 9 (where 1 = very invalid/unfeasible, 5 = uncertain, and 9 = very valid/feasible). In round 3, participants reviewed the results and comments from round 2 and were asked to provide final ratings. Items rated as highly valid and feasible (median scores ≥7 for each) in round 3 were selected as the provisional core set of items. A consensus meeting using a nominal group technique was conducted to further reduce the core set of items. RESULTS: Ninety-nine experts from 16 countries participated in the Delphi exercise. Of the 31 items in the survey, consensus was achieved on 13, in the categories hypertension, renal insufficiency, proteinuria, and hemolysis. Eleven experts took part in the nominal group technique discussion, where consensus was achieved in 5 domains: blood pressure, acute kidney injury, microangiopathic hemolytic anemia, target organ dysfunction, and renal histopathology. CONCLUSION: A core set of items that characterize SRC was identified using consensus methodology. This core set will be used in future data-driven phases of this project to develop classification criteria for SRC.


Assuntos
Lesão Renal Aguda/classificação , Hipertensão Maligna/classificação , Rim/patologia , Escleroderma Sistêmico/complicações , Lesão Renal Aguda/etiologia , Anemia Hemolítica/classificação , Anemia Hemolítica/etiologia , Pressão Sanguínea , Técnica Delfos , Humanos , Hipertensão/classificação , Hipertensão/etiologia , Hipertensão Maligna/etiologia , Proteinúria/classificação , Proteinúria/etiologia , Índice de Gravidade de Doença
13.
Nephrol Dial Transplant ; 33(8): 1290-1291, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085237
14.
Toxicol Pathol ; 46(8): 944-948, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157700

RESUMO

Tubular injury sensitizes glomeruli to injury. We review potential mechanisms of this tubuloglomerular cross talk. In the same nephron, tubular injury can cause stenosis of the glomerulotubular junction and finally result in atubular glomeruli. Tubular injury also affects glomerular filtration function through tubuloglomerular feedback. Progenitor cells, that is, parietal epithelial cells and renin positive cells, can be involved in repair of injured glomeruli and also may be modulated by tubular injury. Loss of nephrons induces additional workload and stress on remaining nephrons. Hypoxia and activation of the renin-angiotensin-aldosterone system induced by tubular injury also modulate tubuloglomerular cross talk. Therefore, effective therapies in chronic kidney disease may need to aim to interrupt this deleterious tubuloglomerular cross talk.


Assuntos
Glomérulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lesão Renal Aguda/complicações , Lesão Renal Aguda/fisiopatologia , Animais , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia
15.
J Clin Invest ; 128(10): 4485-4500, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024858

RESUMO

Oxidative stress is an underlying component of acute and chronic kidney disease. Apoptosis signal-regulating kinase 1 (ASK1) is a widely expressed redox-sensitive serine threonine kinase that activates p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase kinases, and induces apoptotic, inflammatory, and fibrotic signaling in settings of oxidative stress. We describe the discovery and characterization of a potent and selective small-molecule inhibitor of ASK1, GS-444217, and demonstrate the therapeutic potential of ASK1 inhibition to reduce kidney injury and fibrosis. Activation of the ASK1 pathway in glomerular and tubular compartments was confirmed in renal biopsies from patients with diabetic kidney disease (DKD) and was decreased by GS-444217 in several rodent models of kidney injury and fibrosis that collectively represented the hallmarks of DKD pathology. Treatment with GS-444217 reduced progressive inflammation and fibrosis in the kidney and halted glomerular filtration rate decline. Combination of GS-444217 with enalapril, an angiotensin-converting enzyme inhibitor, led to a greater reduction in proteinuria and regression of glomerulosclerosis. These results identify ASK1 as an important target for renal disease and support the clinical development of an ASK1 inhibitor for the treatment of DKD.


Assuntos
Nefropatias Diabéticas/enzimologia , Fibroblastos/enzimologia , Glomérulos Renais/enzimologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Fibrose , Humanos , Glomérulos Renais/patologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/genética , Masculino , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley
17.
Hum Pathol ; 81: 229-234, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29530752

RESUMO

Alport syndrome is due to mutations in one of the genes encoding (α3,4,5) type IV collagen resulting in defective type IV collagen, a key component of the glomerular basement membrane (GBM). The GBM is initially thin and, with ongoing remodeling, develops a thickened basket-woven appearance. We report a unique case of a 9-year-old boy who underwent biopsy for hematuria and proteinuria, diagnosed as IgA nephropathy, with normal GBM appearance and thickness. Because of a family history of hematuria and chronic kidney disease, he subsequently underwent genetic evaluation, and a mutation of α3 type IV collagen (COL4A3) was detected. Additional studies of the initial biopsy demonstrated abnormal type IV collagen immunostaining. A repeat biopsy 4 years later showed characteristic glomerular basement membrane morphology of Alport syndrome and scarring consistent with sequelae of IgA nephropathy. This is the first description of this unusual transition from an initial normal appearance of the glomerular basement membrane to the classic Alport phenotype.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Membrana Basal Glomerular/patologia , Mutação , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Biópsia , Criança , Análise Mutacional de DNA , Progressão da Doença , Imunofluorescência , Predisposição Genética para Doença , Membrana Basal Glomerular/ultraestrutura , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Nefrite Hereditária/complicações , Fenótipo , Valor Preditivo dos Testes , Fatores de Tempo
19.
Kidney Int ; 93(3): 545-559, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29398134

RESUMO

HIV-positive individuals are at increased risk for kidney disease, including HIV-associated nephropathy, noncollapsing focal segmental glomerulosclerosis, immune-complex kidney disease, and comorbid kidney disease, as well as kidney injury resulting from prolonged exposure to antiretroviral therapy or from opportunistic infections. Clinical guidelines for kidney disease prevention and treatment in HIV-positive individuals are largely extrapolated from studies in the general population, and do not fully incorporate existing knowledge of the unique HIV-related pathways and genetic factors that contribute to the risk of kidney disease in this population. We convened an international panel of experts in nephrology, renal pathology, and infectious diseases to define the pathology of kidney disease in the setting of HIV infection; describe the role of genetics in the natural history, diagnosis, and treatment of kidney disease in HIV-positive individuals; characterize the renal risk-benefit of antiretroviral therapy for HIV treatment and prevention; and define best practices for the prevention and management of kidney disease in HIV-positive individuals.


Assuntos
Nefropatia Associada a AIDS , HIV , Rim , Nefrologia/normas , Insuficiência Renal Crônica , Nefropatia Associada a AIDS/diagnóstico , Nefropatia Associada a AIDS/epidemiologia , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/terapia , Fármacos Anti-HIV/efeitos adversos , Comorbidade , Diagnóstico Diferencial , Medicina Baseada em Evidências/normas , Predisposição Genética para Doença , HIV/efeitos dos fármacos , HIV/genética , HIV/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/virologia , Valor Preditivo dos Testes , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/terapia , Fatores de Risco , Resultado do Tratamento
20.
Kidney Int ; 93(4): 789-796, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459092

RESUMO

We present a consensus report pertaining to the improved clarity of definitions and classification of glomerular lesions in lupus nephritis that derived from a meeting of 18 members of an international nephropathology working group in Leiden, Netherlands, in 2016. Here we report detailed recommendations on issues for which we can propose adjustments based on existing evidence and current consensus opinion (phase 1). New definitions are provided for mesangial hypercellularity and for cellular, fibrocellular, and fibrous crescents. The term "endocapillary proliferation" is eliminated and the definition of endocapillary hypercellularity considered in some detail. We also eliminate the class IV-S and IV-G subdivisions of class IV lupus nephritis. The active and chronic designations for class III/IV lesions are replaced by a proposal for activity and chronicity indices that should be applied to all classes. In the activity index, we include fibrinoid necrosis as a specific descriptor. We also make recommendations on issues for which there are limited data at present and that can best be addressed in future studies (phase 2). We propose to proceed to these investigations, with clinicopathologic studies and tests of interobserver reproducibility to evaluate the applications of the proposed definitions and to classify lupus nephritis lesions.


Assuntos
Glomérulos Renais/patologia , Nefrite Lúpica/diagnóstico , Terminologia como Assunto , Biópsia , Doença Crônica , Consenso , Humanos , Nefrite Lúpica/classificação , Nefrite Lúpica/patologia , Nefrite Lúpica/terapia , Valor Preditivo dos Testes , Prognóstico , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA