Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to nonalcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing a liver proteomic analysis from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples of patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the liver of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and NASH) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoiltransferase I (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of NAFLD in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD, by stimulating SIRT1, CPT1a and mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.

2.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Genética/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
4.
Hepatology ; 73(2): 606-624, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32329085

RESUMO

BACKGROUND AND AIMS: G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS: We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing ß-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS: The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.

5.
Cancer Lett ; 496: 72-83, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038489

RESUMO

Splicing alterations represent an actionable cancer hallmark. Splicing factor 3B subunit 1 (SF3B1) is a crucial splicing factor that can be targeted pharmacologically (e.g. pladienolide-B). Here, we show that SF3B1 is overexpressed (RNA/protein) in hepatocellular carcinoma (HCC) in two retrospective (n = 154 and n = 172 samples) and in five in silico cohorts (n > 900 samples, including TCGA) and that its expression is associated with tumor aggressiveness, oncogenic splicing variants expression (KLF6-SV1, BCL-XL) and decreased overall survival. In vitro, SF3B1 silencing reduced cell viability, proliferation and migration and its pharmacological blockade with pladienolide-B inhibited proliferation, migration, and formation of tumorspheres and colonies in liver cancer cell lines (HepG2, Hep3B, SNU-387), whereas its effects on normal-like hepatocyte-derived THLE-2 proliferation were negligible. Pladienolide-B also reduced the in vivo growth and the expression of tumor-markers in Hep3B-induced xenograft tumors. Moreover, SF3B1 silencing and/or blockade markedly modulated the activation of key signaling pathways (PDK1, GSK3b, ERK, JNK, AMPK) and the expression of cancer-associated genes (CDK4, CD24) and oncogenic SVs (KLF6-SV1). Therefore, the genetic and/or pharmacological inhibition of SF3B1 may represent a promising novel therapeutic strategy worth to be explored through randomized controlled trials.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Adulto , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfoproteínas/genética , Prognóstico , Fatores de Processamento de RNA/genética , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hepatology ; 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284502

RESUMO

BACKGROUND AND AIMS: The liver plays a central role in all metabolic processes in the body. However, precise characterization of liver metabolism is often obscured by its inherent complexity. Phosphorylated metabolites occupy a prominent position in all anabolic and catabolic pathways. Here, we develop a 31 P nuclear magnetic resonance (NMR)-based method to study the liver "phosphorome" through the simultaneous identification and quantification of multiple hydrophilic and hydrophobic phosphorylated metabolites. APPROACH AND RESULTS: We applied this technique to define the metabolic landscape in livers from a mouse model of the rare disease disorder congenital erythropoietic porphyria (CEP) as well as two well-known murine models of nonalcoholic steatohepatitis: one genetic, methionine adenosyltransferase 1A knockout mice, and the other dietary, mice fed a high-fat choline-deficient diet. We report alterations in the concentrations of phosphorylated metabolites that are readouts of the balance between glycolysis, gluconeogenesis, the pentose phosphate pathway, the tricarboxylic acid cycle, and oxidative phosphorylation and of phospholipid metabolism and apoptosis. Moreover, these changes correlate with the main histological features: steatosis, apoptosis, iron deposits, and fibrosis. Strikingly, treatment with the repurposed drug ciclopirox improves the phosphoromic profile of CEP mice, an effect that was mirrored by the normalization of liver histology. CONCLUSIONS: In conclusion, these findings indicate that NMR-based phosphoromics may be used to unravel metabolic phenotypes of liver injury and to identify the mechanism of drug action.

7.
Nat Metab ; 1(8): 811-829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31579887

RESUMO

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dopamina/metabolismo , Hipotálamo/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Animais , Bromocriptina/administração & dosagem , Bromocriptina/farmacologia , Feminino , Humanos , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Ratos
8.
Nat Commun ; 9(1): 3432, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143607

RESUMO

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity.


Assuntos
Dieta/efeitos adversos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos Sprague-Dawley , Fator Esteroidogênico 1/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Mol Metab ; 8: 132-143, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290620

RESUMO

OBJECTIVE: Recent reports have implicated the p53 tumor suppressor in the regulation of lipid metabolism. We hypothesized that the pharmacological activation of p53 with low-dose doxorubicin, which is widely used to treat several types of cancer, may have beneficial effects on nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). METHODS: We used long-term pharmacological activation of p53 by i.p. or oral administration of low-dose doxorubicin in different animal models of NAFLD (high fat diet containing 45% and 60% kcal fat) and NASH (methionine- and choline-deficient diet and choline deficiency combined with high fat diet). We also administered doxorubicin in mice lacking p53 in the liver and in two human hepatic cells lines (HepG2 and THLE2). RESULTS: The attenuation of liver damage was accompanied by the stimulation of fatty acid oxidation and decrease of lipogenesis, inflammation, and ER stress. The effects of doxorubicin were abrogated in mice with liver-specific ablation of p53. Finally, the effects of doxorubicin on lipid metabolism found in animal models were also present in two human hepatic cells lines, in which the drug stimulated fatty acid oxidation and inhibited de novo lipogenesis at doses that did not cause changes in apoptosis or cell viability. CONCLUSION: These data provide new evidence for targeting p53 as a strategy to treat liver disease.


Assuntos
Doxorrubicina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores da Topoisomerase II/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/farmacologia , Proteína Supressora de Tumor p53/genética
10.
Adipocyte ; 7(1): 63-66, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29261404

RESUMO

The chaperone GRP78 (glucose related protein 78), also called BiP (binding immunoglobulin protein) is a key regulator of endoplasmic reticulum (ER) stress. We recently described that over-expression of GRP78 specifically in the ventromedial nucleus of the hypothalamus (VMH) releases hypothalamic ER stress in rodent obese models leading to weight loss, reduced hepatic steatosis and improved insulin and leptin sensitivity. The action of GRP78 is mediated by a feeding-independent mechanism involving increased sympathetic tone, augmented brown adipose tissue (BAT) thermogenesis and induction browning of white adipose tissue (WAT).


Assuntos
Proteínas de Choque Térmico/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/genética , Humanos , Termogênese/genética , Termogênese/fisiologia
12.
Nat Commun ; 8: 15111, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480888

RESUMO

p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKß activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKß and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKß silencing. Our findings indicate an unexpected role of the p63/IKKß/ER stress pathway in lipid metabolism and liver disease.


Assuntos
Estresse do Retículo Endoplasmático , Fígado Gorduroso/metabolismo , Quinase I-kappa B/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/fisiopatologia , Feminino , Hepatócitos/metabolismo , Humanos , Quinase I-kappa B/genética , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...