Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 11(6): 2046-2052, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32079402


Detailed speciation of electrolytes as a function of chemical system and concentration provides the foundation for understanding bulk transport as well as possible decomposition mechanisms. In particular, multivalent electrolytes have shown a strong coupling between anodic stability and solvation structure. Furthermore, solvents that are found to exhibit reasonable stability against alkaline-earth metals generally exhibit low permittivity, which typically increases the complexity of the electrolyte species. To improve our understanding of ionic population and associated transport in these important classes of electrolytes, the speciation of Mg(TFSI)2 in monoglyme and diglyme systems is studied via a multiscale thermodynamic model using first-principles calculations for ion association and molecular dynamics simulations for dielectric properties. The results are then compared to Raman and dielectric relaxation spectroscopies, which independently confirm the modeling insights. We find that the significant presence of free ions in the low-permittivity glymes in the concentration range from 0.02 to 0.6 M is well-explained by the low-permittivity redissociation hypothesis. Here, salt speciation is largely dictated by long-range electrostatics, which includes permittivity increases due to polar contact ion pairs. The present results suggest that other low-permittivity multivalent electrolytes may also reach high conductivities as a result of redissociation.

ACS Cent Sci ; 5(7): 1250-1260, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31403073


Nonaqueous polyelectrolyte solutions have been recently proposed as high Li+ transference number electrolytes for lithium ion batteries. However, the atomistic phenomena governing ion diffusion and migration in polyelectrolytes are poorly understood, particularly in nonaqueous solvents. Here, the structural and transport properties of a model polyelectrolyte solution, poly(allyl glycidyl ether-lithium sulfonate) in dimethyl sulfoxide, are studied using all-atom molecular dynamics simulations. We find that the static structural analysis of Li+ ion pairing is insufficient to fully explain the overall conductivity trend, necessitating a dynamic analysis of the diffusion mechanism, in which we observe a shift from largely vehicular transport to more structural diffusion as the Li+ concentration increases. Furthermore, we demonstrate that despite the significantly higher diffusion coefficient of the lithium ion, the negatively charged polyion is responsible for the majority of the solution conductivity at all concentrations, corresponding to Li+ transference numbers much lower than previously estimated experimentally. We quantify the ion-ion correlations unique to polyelectrolyte systems that are responsible for this surprising behavior. These results highlight the need to reconsider the approximations typically made for transport in polyelectrolyte solutions.

J Am Chem Soc ; 140(19): 6130-6136, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29685030


Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.

ACS Energy Lett ; 2(9): 2014-2020, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-29104940


Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 µm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.

Semin Dial ; 29(6): 481-490, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27556575


Patients maintained on standard three times weekly hemodialysis have a high mortality rate and a limited quality of life. Some of this illness is due to systemic diseases that have caused kidney failure, and thus may be irreversible. But we presume that imperfect replacement of normal kidney function by dialysis contributes importantly. Patients on hemodialysis are subject to fluctuations in extracellular fluid volume and inorganic ion concentrations and their plasma levels of many organic waste solutes remain very high. It is thus natural to suppose that their health could be improved by increasing the intensity of dialysis treatment. But despite a great deal of work over the past 20 years, evidence that such improvement can be obtained is generally lacking. Specific benefits can indeed be achieved. Patients who cannot control their intradialytic weight gains or plasma phosphate levels with standard therapy can benefit from extending treatment time. But we cannot promise the average patient that longer or more frequent treatment will reduce mortality or improve the quality of life.

Falência Renal Crônica/terapia , Nefrologia/tendências , Diálise Renal , Humanos , Falência Renal Crônica/mortalidade , Fosfatos/sangue , Qualidade de Vida , Ganho de Peso
J Am Soc Nephrol ; 27(11): 3469-3478, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27026365


The Hemodialysis (HEMO) Study showed that high-dose hemodialysis providing a single-pool Kt/Vurea of 1.71 provided no benefit over a standard treatment providing a single-pool Kt/Vurea of 1.32. Here, we assessed whether the high-dose treatment used lowered plasma levels of small uremic solutes other than urea. Measurements made ≥3 months after randomization in 1281 patients in the HEMO Study showed a range in the effect of high-dose treatment compared with that of standard treatment: from no reduction in the level of p-cresol sulfate or asymmetric dimethylarginine to significant reductions in the levels of trimethylamine oxide (-9%; 95% confidence interval [95% CI], -2% to -15%), indoxyl sulfate (-11%; 95% CI, -6% to -15%), and methylguanidine (-22%; 95% CI, -18% to -27%). Levels of three other small solutes also decreased slightly; the level of urea decreased 9%. All-cause mortality did not significantly relate to the level of any of the solutes measured. Modeling indicated that the intermittency of treatment along with the presence of nondialytic clearance and/or increased solute production accounted for the limited reduction in solute levels with the higher Kt/Vurea In conclusion, failure to achieve greater reductions in solute levels may explain the failure of high Kt/Vurea treatment to improve outcomes in the HEMO Study. Furthermore, levels of the nonurea solutes varied widely among patients in the HEMO Study, and achieved Kt/Vurea accounted for very little of this variation. These results further suggest that an index only on the basis of urea does not provide a sufficient measure of dialysis adequacy.

Diálise Renal , Ureia/metabolismo , Feminino , Soluções para Hemodiálise/química , Humanos , Masculino , Pessoa de Meia-Idade , Ureia/análise