Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Klin Onkol ; 32(Supplementum2): 6-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409076

RESUMO

An inherited predisposition to breast cancer underlies 5-10% of breast tumors. High-risk BRCA1 and BRCA2 genes result in an 85% lifetime risk of breast cancer and a 20-60% lifetime risk of ovarian cancer. Next-generation sequencing or massive parallel sequencing are now established testing methods that enable screening for many genes that predispose to heterogeneous hereditary cancer syndromes (22 genes are required by the health insurance companies). In addition to BRCA1 and BRCA2, inherited mutations in other genes predispose to breast and/or ovarian cancer. High-risk breast cancer genes include TP53, STK11, CDH1, PTEN, PALB2, and NF1, while moderate-risk (2-4 times increased risk) breast cancer genes include ATM, CHEK2, and NBN. Moderate risk is also suggested for Lynch syndrome, MUTYH, BRIP1, RAD51C, RAD51D, BARD1, FANCA, FANCC, FANCM, BLM, WRN genes. In heterozygotes for other recessive syndromes the risk of developing breast cancer is subject to current research. Low-risk genes are (mostly) irrelevant from a clinical perspective. Other genes that increase the risk of ovarian cancer include the genes for Lynch syndrome, the BRIP1, RAD51C and RAD51D genes. Preventive care should be proposed based on assumed cumulative breast cancer risk (see http: //www.mamo.cz): a risk of >20% for BRCA1/2, TP53, PTEN, STK11, CDH1, PALB2, CHEK2, ATM, and NF1; and a risk of 10-20% for BRIP1, RAD51C, RAD51B, BARD1, FANCA, FANCC, FANCM, NBN, BLM, and WRN. The genetic risk should be assessed by a geneticist and be based on inherited mutations and empirical risk according to family history. Prophylactic mastectomy is considered for high-risk gene carriers but not for moderate-risk gene carriers; however, it may be considered if there is an underlying family history, a risk of parenchyma of the mammary gland, or other risk factors. Ovarian cancer risk increases significantly in carriers of the BRIP1, RAD51C, and RAD51D genes. For prevention of ovarian cancer, prophylactic salpingo-oophorectomy is an important component of preventive care. In ovarian cancer families with no identified risk germline mutation, preventive salpingo-oophorectomy is not routinely recommended but may be considered as the only efficient method of prevention due to the increased empirical risk (4 times) of ovarian cancer in first-degree relatives. Supported by the grant project MH CZ - RVO (MMCI, 00209805), AZV 15-27695A and AZV 16-29959A. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 17. 5. 2019 Accepted: 31. 5. 2019.

2.
Klin Onkol ; 32(Supplementum2): 36-50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409080

RESUMO

BACKGROUND: Hereditary mutations in the CHEK2 gene (which encodes CHK2 kinase) contribute to a moderately increased risk of breast cancer (BC) and other cancers. Large variations in the frequency of CHEK2 mutations and the occurrence of variants of unknown clinical significance (VUS) complicate estimation of cancer risk in carriers of germline CHEK2 mutations. PATIENTS AND METHODS: We performed mutation analysis of 1,526 high-risk Czech BC patients and 3,360 Czech controls. Functional analysis was performed for identified VUS using a model system based on a human RPE1-CHEK2-KO cell line harboring biallelic inactivation of endogenous CHEK2. RESULTS: The frequency of ten truncating CHEK2 variants differed markedly between BC patients (2.26%) and controls (0.11%; p = 4.1 × 1012). We also found 23 different missense variants in 4.5% patients and in 4.0% of controls. The most common was p.I157T, which was found in patients and controls with the same frequency. Functional analysis identified nine functionally deleterious VUS, another nine functionally neutral VUS, and four intermediate VUS (including p.I157T). We found that carriers of truncating CHEK2 mutations had a high BC risk (OR 8.19; 95% CI 4.11-17.75), and that carriers of functionally deleterious missense variants had a moderate risk (OR 4.06; 95% CI, 1.37-13.39). Carriers of these mutations developed BC at 44.4 and 50.7 years, respectively. Functionally neutral and functionally intermediate missense variants did not increase the BC risk. BC in CHEK2 mutation carriers was frequently ER-positive and of higher grade. Notably, carriers of CHEK2 mutations developed second cancers more frequently than BRCA1/BRCA2/PALB2/p53 or mutation non-carriers. CONCLUSION: Hereditary CHEK2 mutations contribute to the development of hereditary BC. The associated cancer risk in mutation carriers increases with the number of affected individuals in a family. Annual follow-up with breast ultrasound, mammography, or magnetic resonance imaging is recommended for asymptomatic mutation carriers from the age of 40. Surgical prevention and specific follow-up of other tumors should be considered based on family cancer history. The work was supported by grants from the Czech Health Research Council of the Ministry of Health of the Czech Republic NR 15-28830A, 16-29959A, NV19-03-00279, projects of the PROGRES Q28/LF1, GAUK 762216, SVV2019 / 260367, PRIMUS/17/MED/9, UNCE/MED/016, Progress Q26, LQ1604 NPU II and project AVČR Qualitas. The analysis of a set of unselected controls was made possible by the existence and support of the scientific infrastructure of the National Center for Medical Genomics (LM2015091) and its project aimed at creating a reference database of genetic variants of the Czech Republic (CZ.02.1.01/0.0/0.0/16_013/0001634). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 2. 4. 2019 Accepted: 14. 5. 2019.

3.
Klin Onkol ; 32(Supplementum2): 51-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409081

RESUMO

BACKGROUND: Deleterious mutations in the BRCA1 and BRCA2 genes account for a considerable proportion of dominantly inherited breast and ovarian cancer susceptibility. The laboratory interpretation has always been dependent on the information available at the time of the report conclusion. The aim of this study has been to review the results from the BRCA testing at Masaryk Memorial Cancer Institute (MMCI). PATIENTS AND METHODS: Patients with suspected hereditary predisposition to breast/ovarian cancer, belonging to 7,400 families, were referred by genetic counsellors for BRCA1 and BRCA2 mutation testing at the MMCI from 1999 to the beginning of 2018. Various methods have been used over 20 years of laboratory practice - starting with the Protein Truncation Test and Heteroduplex Analysis via the High Resolution Melting analysis and Sanger sequencing up to Next Generation Sequencing. RESULTS: BRCA1 and BRCA2 mutation screening resulted in the identification of 1,021 families with a germline high-risk BRCA1 mutation and 497 families carrying a high-risk BRCA2 mutation, representing a mutation detection rate of 20.5%. A broad spectrum of unique mutations classified as pathogenic or likely pathogenic has been detected in both genes - 124 in the BRCA1 and 123 in the BRCA2 gene. Other sequence variants (96 unique variants in the BRCA1 and 126 in the BRCA2 gene) have been revised and classified as benign or likely benign. The other 82 unique variants remain classified as of uncertain significance mainly due to a lack of information for inclusion in other groups. All the results are summarised in the tables, including the reasons for their classification. CONCLUSION: The clinical classification of rare sequence variants identified in the high-risk breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling. Here we present an overview of BRCA mutation frequencies in our region and the retrospective evaluation and eventually reclassification of previously reported rare variants in light of recent findings.

4.
Klin Onkol ; 32(Supplementum2): 72-78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409082

RESUMO

BACKGROUND: Ovarian cancer is a disease with high mortality. Approximately 1,000 women are diagnosed with ovarian cancer in the Czech Republic annually. Women harboring a mutation in cancer-predisposing genes face an increased risk of tumor development. Mutations in BRCA1, BRCA2, BRIP1, and Lynch syndrome genes (RAD51C, RAD51D, and STK11) are associated with a high risk of ovarian cancer, and mutations in ATM, CHEK2, NBN, PALB2, and BARD1 appear to increase the risk. Our aim was to examine the frequency of mutations in cancer-predisposing genes in the Czech Republic. MATERIALS AND METHODS: We analyzed 1,057 individuals including ovarian cancer patients and 617 non-cancer controls using CZECANCA panel next-generation sequencing on the Illumina platform. Pathogenic mutations in high-risk genes, including CNVs, were detected in 30.6% of patients. The mutation frequency reached 25.0% and 18.2% in subgroups of unselected ovarian cancer patients and patients with a negative family cancer history, respectively. The most frequently mutated genes were BRCA1 and BRCA2. The overall frequency of mutations in non-BRCA genes was comparable to that in BRCA2. The mutation frequency in ovarian cancer patients aged >70 years was three times higher than that in patients diagnosed before the age of 30. CONCLUSION: Ovarian cancer is a heterogeneous disease with a high proportion of hereditary cases. The lack of efficient screening for early diagnosis emphasizes the importance of identifying carriers of mutations in ovarian cancer-predisposing genes; this is because proper follow-up and prevention strategies can reduce overall ovarian cancer-related mortality. This work was supported by grants AZV 15-27695A, SVV2019/260367, PROGRES Q28/LF1. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 7. 3. 2019 Accepted: 24. 4. 2019.

5.
Klin Onkol ; 32(Supplementum2): 109-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409086

RESUMO

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is a rare variant of familial adenomatous polyposis. It is an autosomal-dominant cancer-predisposition syndrome with massive polyposis of the stomach and a significant risk of gastric adenocarcinoma. Li et al., 2016, described point mutations in the Ying Yang 1 binding site of the APC gene 1B promoter associated with GAPPS syndrome. The first GAPPS syndrome in a Czech family was described in 2016. At Masaryk Memorial Cancer Institute, GAPPS syndrome was diagnosed in eight families using Sanger sequencing. In all families, one mutation in promoter 1B of APC gene NM_001127511: c.-191T>C was detected. This mutation was not found in any patient with multiple colon polyposis without a detected classic mutation in the APC gene. In total, 24 carriers of this mutation in promoter 1B of the APC gene were detected. Out of those 24 carriers, 20 had massive gastric polyposis with more than 100 fundic glandular polyps diagnosed between the age of 22 and 65, 5 had already died of adenocarcinoma of the stomach (at the ages of 29, 40, 59, 60 and 64, respectively) and another woman was treated at the age of 29. Two female carriers do not yet have polyposis of the stomach at the ages of 31 and 65, respectively; one female carrier has incipient polyposis at the age of 58. A male carrier does not have any clinical symptoms, gastroscopy was not indicated because of his age. Prophylactic total gastrectomy with D2 lymphadenectomy has already been performed 6 times at Masaryk Memorial Cancer Institute, in 5 cases without adenocarcinoma at the ages of 27, 34, 44, 51 and 66, respectively; in one female carrier adenocarcinoma of the stomach was detected in a histology specimen. Two prophylactic gastrectomies with D1 lymphadenectomy were performed at University Hospital Brno at the ages of 42 and 50, respectively. In the Czech Republic point mutation c.-191T>C (rs879253783) in the 1B promoter of the APC gene is a frequent cause of gastric polyposis with a high risk of gastric adenocarcinoma, even at a young age. Positively tested individuals are recommended to high-risk oncology clinic. A necessary part of the discussion with the patient is information about a preventive gastrectomy.

6.
Klin Onkol ; 32(Supplementum2): 118-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409087

RESUMO

BACKGROUND: BAP1 syndrome is an autosomal dominant hereditary cancer syndrome associated with increased risk of malignant mesothelioma; uveal and cutaneous melanoma; kidney cancer; lung adenocarcinoma; meningioma; basaliomas; and breast, ovarian, and prostate tumors. The BAP1 gene (BRCA1-associated protein 1) is a tumor suppressor gene involved in DNA repair via homologous recombination. BAP1 regulates the cell cycle, differentiation, DNA damage responses, and cell proliferation through deubiquitination. Somatic mutations in the BAP1 gene are common in many types of tumors. OBSERVATION: Two families harboring a germline mutation in the BAP1 gene were diagnosed at Masaryk Memorial Cancer Institute (MMCI). A 27-year-old index female from one family was followed-up for multiple nevi. Her mother and uncle had malignant mesothelioma, and her maternal grandmother had uveal melanoma. The index case tested positive for a BAP1 (NM_004656.2): c.217delG/p.Asp73Metfs*5 frame-shift mutation. The melanoma was removed at the age of 28 and 31. In the second family, an 11-year-old index female had two nevi removed from her head, and a spitzoid-type skin lesion was diagnosed at the age of 11. Her 34-year-old mother had multiple nevi, and a skin lesion of spitzoid-type was removed from the abdomen. Both patients harbored a BAP1 (NM_004656.2): c.123-1G>T acceptor splice site mutation (IARC [International Agency for Research on Cancer] class 4 [probably pathogenic]). Preventive measures for BAP1 syndrome should include known risks for cancer. Tumors occur early and repeatedly. At the MMCI, we recommend physical examination by an oncologist, eyes and skin examination, every 6 months; whole-body magnetic resonance imaging, including the central nervous system, every year (or low-dose computed tomography/chest and abdomen magnetic resonance imaging); annual abdominal ultrasound, breast ultrasound, or mammography; a gynecological ultrasound examination every 6 months; colonoscopy starting at the age of 45; and other suitable surveillances based on family history. CONCLUSION: BAP1 syndrome is a complex cancer syndrome with a high risk of rare malignant mesothelioma, malignant skin and uveal melanoma, spitzoid-type skin lesions, and other tumors. Detection of this syndrome is essential for the survival of high-risk individuals. Supported by the grant project MH CZ - RVO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 21. 5. 2019 Accepted: 6. 6. 2019.

7.
Genet Epidemiol ; 43(7): 844-863, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407831

RESUMO

Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p = .0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs.

8.
Br J Cancer ; 121(2): 180-192, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213659

RESUMO

BACKGROUND: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m2 increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population.

9.
Eur J Hum Genet ; 27(10): 1589-1598, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31231134

RESUMO

Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.

10.
Int J Cancer ; 145(7): 1782-1797, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050813

RESUMO

Germline mutations in checkpoint kinase 2 (CHEK2), a multiple cancer-predisposing gene, increase breast cancer (BC) risk; however, risk estimates differ substantially in published studies. We analyzed germline CHEK2 variants in 1,928 high-risk Czech breast/ovarian cancer (BC/OC) patients and 3,360 population-matched controls (PMCs). For a functional classification of VUS, we developed a complementation assay in human nontransformed RPE1-CHEK2-knockout cells quantifying CHK2-specific phosphorylation of endogenous protein KAP1. We identified 10 truncations in 46 (2.39%) patients and in 11 (0.33%) PMC (p = 1.1 × 10-14 ). Two types of large intragenic rearrangements (LGR) were found in 20/46 mutation carriers. Truncations significantly increased unilateral BC risk (OR = 7.94; 95%CI 3.90-17.47; p = 1.1 × 10-14 ) and were more frequent in patients with bilateral BC (4/149; 2.68%; p = 0.003), double primary BC/OC (3/79; 3.80%; p = 0.004), male BC (3/48; 6.25%; p = 8.6 × 10-4 ), but not with OC (3/354; 0.85%; p = 0.14). Additionally, we found 26 missense VUS in 88 (4.56%) patients and 131 (3.90%) PMC (p = 0.22). Using our functional assay, 11 variants identified in 15 (0.78%) patients and 6 (0.18%) PMC were scored deleterious (p = 0.002). Frequencies of functionally intermediate and neutral variants did not differ between patients and PMC. Functionally deleterious CHEK2 missense variants significantly increased BC risk (OR = 3.90; 95%CI 1.24-13.35; p = 0.009) and marginally OC risk (OR = 4.77; 95%CI 0.77-22.47; p = 0.047); however, carriers low frequency will require evaluation in larger studies. Our study highlights importance of LGR detection for CHEK2 analysis, careful consideration of ethnicity in both cases and controls for risk estimates, and demonstrates promising potential of newly developed human nontransformed cell line assay for functional CHEK2 VUS classification.

11.
Cas Lek Cesk ; 158(1): 15-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31046387

RESUMO

About 5-10 % of cancer diseases may be caused by genetic predisposition, in ovarian cancer it could be almost 20 % of cases. The cause is mostly a pathogenic germline mutation in tumor suppressor genes, DNA repair genes, less frequently in oncogenes. So far, we know more than 200 hereditary cancer syndromes. The most frequently tested are hereditary breast and ovarian cancer syndrome, hereditary nonpolyposis colorectal cancer (Lynch syndrome), quite frequent are also hereditary gastrointestinal polyposes. Genetic counseling and testing are routinely available for patients or their relatives. Testing methods are changing; nowadays we use next generation sequencing methods (massive parallel sequencing) with testing of panels of high-risk genes. If the mutation is discovered, we may offer the testing to relatives. Genetic testing is indicated by medical geneticist after the genetic counseling session. High-risk individuals should be followed oncology clinics or by other specialists.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Síndromes Neoplásicas Hereditárias , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/prevenção & controle , Aconselhamento Genético , Predisposição Genética para Doença , Testes Genéticos , Humanos , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/prevenção & controle
12.
PLoS Med ; 16(1): e1002724, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605491

RESUMO

BACKGROUND: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.


Assuntos
Carcinoma de Células Renais/etiologia , Neoplasias Renais/etiologia , Obesidade/complicações , Glicemia/análise , Pressão Sanguínea , Índice de Massa Corporal , Carcinoma de Células Renais/genética , Diabetes Mellitus Tipo 2/complicações , Feminino , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Insulina/sangue , Neoplasias Renais/genética , Lipídeos/sangue , Masculino , Análise da Randomização Mendeliana , Obesidade/genética , Fatores de Risco
13.
Cancer Biol Ther ; 20(5): 633-641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30638113

RESUMO

Heterozygous germline BRCA2 mutations predispose to breast, ovarian, pancreatic and other types of cancer. The presence of a pathogenic mutation in patients or their family members warrants close surveillance or prophylactic surgery. Besides clearly pathogenic mutations, variants leading only to a single amino acid substitution are often identified. The influence of such variants on cancer risk is often unknown, making their presence a major clinical problem. When genetic methods are insufficient to classify these variants, functional assays with various cellular models are performed. We developed and applied a new syngeneic model of human cancer cells to test all variants of unknown significance in exon 18 identified by genetic testing of high-risk cancer patients in the Czech Republic, via introduction of constructs containing each of these variants into the wild-type allele of BRCA2-heterozygous DLD1 cells (BRCA2wt/Δex11). We found unaffected DNA repair function of BRCA2 in cell lines BRCA27997G>C/Δex11, BRCA28111C>T/Δex11, BRCA28149G>T/Δex11, BRCA28182G>A/Δex11, and BRCA28182G>T/Δex11, whereas the cell line BRCA28168A>G/Δex11 and the nonsense mutation carrying line BRCA28305G>T/Δex11 did affect protein function. Targeting the BRCA2 wild-type allele with a construct carrying the variant c.7988A> G resulted in incorporation exclusively into the already defective allele in all viable clones, strongly suggesting a detrimental phenotype. Our model thus offers a valuable tool for the functional evaluation of unclassified variants in the BRCA2 gene and provides a stable and distributable cellular resource for further research.

14.
J Natl Cancer Inst ; 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541042

RESUMO

Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

15.
Nat Commun ; 9(1): 4182, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305637

RESUMO

Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40-31.03, P = 1.36 × 10-54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45-6.96, P = 8.75 × 10-19). Both risk alleles are observed at a low frequency among controls (~2-3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.

16.
J Natl Cancer Inst ; 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312457

RESUMO

Background: BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk. Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear. Methods: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided. Results: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer. Conclusion: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.

17.
J Natl Cancer Inst ; 2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30137376

RESUMO

Background: We applied a training and testing approach to develop and validate a plasma metabolite panel for the detection of early-stage pancreatic ductal adenocarcinoma (PDAC) alone and in combination with a previously validated protein panel for early-stage PDAC. Methods: A comprehensive metabolomics platform was initially applied to plasmas collected from 20 PDAC cases and 80 controls. Candidate markers were filtered based on a second independent cohort that included nine invasive intraductal papillary mucinous neoplasm cases and 51 benign pancreatic cysts. Blinded validation of the resulting metabolite panel was performed in an independent test cohort consisting of 39 resectable PDAC cases and 82 matched healthy controls. The additive value of combining the metabolite panel with a previously validated protein panel was evaluated. Results: Five metabolites (acetylspermidine, diacetylspermine, an indole-derivative, and two lysophosphatidylcholines) were selected as a panel based on filtering criteria. A combination rule was developed for distinguishing between PDAC and healthy controls using the Training Set. In the blinded validation study with early-stage PDAC samples and controls, the five metabolites yielded areas under the curve (AUCs) ranging from 0.726 to 0.842, and the combined metabolite model yielded an AUC of 0.892 (95% confidence interval [CI] = 0.828 to 0.956). Performance was further statistically significantly improved by combining the metabolite panel with a previously validated protein marker panel consisting of CA 19-9, LRG1, and TIMP1 (AUC = 0.924, 95% CI = 0.864 to 0.983, comparison DeLong test one-sided P= .02). Conclusions: A metabolite panel in combination with CA19-9, TIMP1, and LRG1 exhibited substantially improved performance in the detection of early-stage PDAC compared with a protein panel alone.

18.
PLoS One ; 13(4): e0195761, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649263

RESUMO

BACKGROUND: Carriers of mutations in hereditary cancer predisposition genes represent a small but clinically important subgroup of oncology patients. The identification of causal germline mutations determines follow-up management, treatment options and genetic counselling in patients' families. Targeted next-generation sequencing-based analyses using cancer-specific panels in high-risk individuals have been rapidly adopted by diagnostic laboratories. While the use of diagnosis-specific panels is straightforward in typical cases, individuals with unusual phenotypes from families with overlapping criteria require multiple panel testing. Moreover, narrow gene panels are limited by our currently incomplete knowledge about possible genetic dispositions. METHODS: We have designed a multi-gene panel called CZECANCA (CZEch CAncer paNel for Clinical Application) for a sequencing analysis of 219 cancer-susceptibility and candidate predisposition genes associated with frequent hereditary cancers. RESULTS: The bioanalytical and bioinformatics pipeline was validated on a set of internal and commercially available DNA controls showing high coverage uniformity, sensitivity, specificity and accuracy. The panel demonstrates a reliable detection of both single nucleotide and copy number variants. Inter-laboratory, intra- and inter-run replicates confirmed the robustness of our approach. CONCLUSION: The objective of CZECANCA is a nationwide consolidation of cancer-predisposition genetic testing across various clinical indications with savings in costs, human labor and turnaround time. Moreover, the unified diagnostics will enable the integration and analysis of genotypes with associated phenotypes in a national database improving the clinical interpretation of variants.


Assuntos
Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Síndromes Neoplásicas Hereditárias/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Mutação INDEL , Masculino , Mutação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Sci Rep ; 8(1): 4534, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540730

RESUMO

With the aim to dissect the effect of adult height on head and neck cancer (HNC), we use the Mendelian randomization (MR) approach to test the association between genetic instruments for height and the risk of HNC. 599 single nucleotide polymorphisms (SNPs) were identified as genetic instruments for height, accounting for 16% of the phenotypic variation. Genetic data concerning HNC cases and controls were obtained from a genome-wide association study. Summary statistics for genetic association were used in complementary MR approaches: the weighted genetic risk score (GRS) and the inverse-variance weighted (IVW). MR-Egger regression was used for sensitivity analysis and pleiotropy evaluation. From the GRS analysis, one standard deviation (SD) higher height (6.9 cm; due to genetic predisposition across 599 SNPs) raised the risk for HNC (Odds ratio (OR), 1.14; 95% Confidence Interval (95%CI), 0.99-1.32). The association analyses with potential confounders revealed that the GRS was associated with tobacco smoking (OR = 0.80, 95% CI (0.69-0.93)). MR-Egger regression did not provide evidence of overall directional pleiotropy. Our study indicates that height is potentially associated with HNC risk. However, the reported risk could be underestimated since, at the genetic level, height emerged to be inversely associated with smoking.

20.
PLoS One ; 13(2): e0192999, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29462211

RESUMO

BACKGROUND: An association between low socioeconomic status (SES) and lung cancer has been observed in several studies, but often without adequate control for smoking behavior. We studied the association between lung cancer and occupationally derived SES, using data from the international pooled SYNERGY study. METHODS: Twelve case-control studies from Europe and Canada were included in the analysis. Based on occupational histories of study participants we measured SES using the International Socio-Economic Index of Occupational Status (ISEI) and the European Socio-economic Classification (ESeC). We divided the ISEI range into categories, using various criteria. Stratifying by gender, we calculated odds ratios (OR) and 95% confidence intervals (CI) by unconditional logistic regression, adjusting for age, study, and smoking behavior. We conducted analyses by histological subtypes of lung cancer and subgroup analyses by study region, birth cohort, education and occupational exposure to known lung carcinogens. RESULTS: The analysis dataset included 17,021 cases and 20,885 controls. There was a strong elevated OR between lung cancer and low SES, which was attenuated substantially after adjustment for smoking, however a social gradient persisted. SES differences in lung cancer risk were higher among men (lowest vs. highest SES category: ISEI OR 1.84 (95% CI 1.61-2.09); ESeC OR 1.53 (95% CI 1.44-1.63)), than among women (lowest vs. highest SES category: ISEI OR 1.54 (95% CI 1.20-1.98); ESeC OR 1.34 (95% CI 1.19-1.52)). CONCLUSION: SES remained a risk factor for lung cancer after adjustment for smoking behavior.


Assuntos
Neoplasias Pulmonares/epidemiologia , Fatores Etários , Idoso , Canadá , Europa (Continente) , Feminino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Razão de Chances , Fatores de Risco , Fatores Sexuais , Fumar/epidemiologia , Classe Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA