Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6462): 241-246, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601769

RESUMO

Purification of ethylene (C2H4), the largest-volume product of the chemical industry, currently involves energy-intensive processes such as chemisorption (CO2 removal), catalytic hydrogenation (C2H2 conversion), and cryogenic distillation (C2H6 separation). Although advanced physisorbent or membrane separation could lower the energy input, one-step removal of multiple impurities, especially trace impurities, has not been feasible. We introduce a synergistic sorbent separation method for the one-step production of polymer-grade C2H4 from ternary (C2H2/C2H6/C2H4) or quaternary (CO2/C2H2/C2H6/C2H4) gas mixtures with a series of physisorbents in a packed-bed geometry. We synthesized ultraselective microporous metal-organic materials that were readily regenerated, including one that was selective for C2H6 over CO2, C2H2, and C2H4.

2.
ACS Appl Mater Interfaces ; 11(26): 23192-23197, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184107

RESUMO

Inspired by the structure of carbonic anhydrase, we developed a robust ultramicroporous lanthanide metal-organic framework (MOF) platform (NKMOF-3-Ln), which possesses a porous pocket to selectively bind with CO2 at ambient conditions. Notably, CO2 molecules can be precisely observed in the single-crystal structure of NKMOF-3-Ln. Highly ordered CO2 molecules can strongly interact with the framework via electrostatic interaction of nitrates. We found that the CO2 adsorption capacity and binding energy were gradually enhanced as lanthanide contraction. The strong CO2 binding affinity endows NKMOF-3-Ln with excellent CO2 separation performance, which is verified by experimental breakthrough results. Moreover, because of the specific binding affinity of CO2, NKMOF-3-Eu showed a fluorescence response to CO2.

3.
Angew Chem Int Ed Engl ; 58(30): 10209-10214, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31059186

RESUMO

Simultaneous removal of trace amounts of propyne and propadiene from propylene is an important but challenging industrial process. We report herein a class of microporous metal-organic frameworks (NKMOF-1-M) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. NKMOF-1-M separated a ternary propyne/propadiene/propylene (0.5 : 0.5 : 99.0) mixture with the highest reported selectivity for the production of polymer-grade propylene (99.996 %) at ambient temperature, as attributed to its strong binding affinity for propyne and propadiene over propylene. Moreover, we were able to visualize propyne and propadiene molecules in the single-crystal structure of NKMOF-1-M through a convenient approach under ambient conditions, which helped to precisely understand the binding sites and affinity for propyne and propadiene. These results provide important guidance on using ultramicroporous MOFs as physisorbent materials.

4.
Angew Chem Int Ed Engl ; 58(30): 10138-10141, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31115966

RESUMO

As a major greenhouse gas, methane, which is directly vented from the coal-mine to the atmosphere, has not yet drawn sufficient attention. To address this problem, we report a methane nano-trap that features oppositely adjacent open metal sites and dense alkyl groups in a metal-organic framework (MOF). The alkyl MOF-based methane nano-trap exhibits a record-high methane uptake and CH4 /N2 selectivity at 298 K and 1 bar. The methane molecules trapped within the alkyl MOF were crystalographically identified by single-crystal X-ray diffraction experiments, which in combination with molecular simulation studies unveiled the methane adsorption mechanism within the MOF-based nano-trap. The IAST calculations and the breakthrough experiments revealed that the alkyl MOF-based methane nano-trap is a new benchmark for CH4 /N2 separation, thereby providing a new perspective for capturing methane from coal-mine methane to recover fuel and reduce greenhouse gas emissions.

5.
Chem Commun (Camb) ; 55(22): 3219-3222, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30806425

RESUMO

Industrial specifications require CO2 concentrations in natural gas below 50 ppm during liquefaction because of corrosion and CO2 freezing. Herein, we report a physisorbent (TIFSIX-3-Ni) that exhibits new benchmark CO2/CH4 selectivity and fast kinetics, thereby enabling one-step LNG processing to CO2 levels of 25 ppm.

6.
Angew Chem Int Ed Engl ; 57(34): 10971-10975, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29972279

RESUMO

Highly selective separation and/or purification of acetylene from various gas mixtures is a relevant and difficult challenge that currently requires costly and energy-intensive chemisorption processes. Two ultramicroporous metal-organic framework physisorbents, NKMOF-1-M (M=Cu or Ni), offer high hydrolytic stability and benchmark selectivity towards acetylene versus several gases at ambient temperature. The performance of NKMOF-1-M is attributed to their exceptional acetylene binding affinity as revealed by modelling and several experimental studies: in situ single-crystal X-ray diffraction, FTIR, and gas mixture breakthrough tests. NKMOF-1-M exhibit better low-pressure uptake than existing physisorbents and possesses the highest selectivities yet reported for C2 H2 /CO2 and C2 H2 /CH4 . The performance of NKMOF-1-M is not driven by the same mechanism as current benchmark physisorbents that rely on pore walls lined by inorganic anions.

7.
Sci Adv ; 4(4): eaaq1636, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29719864

RESUMO

Shape-memory effects are quite well-studied in general, but there is only one reported example in the context of porous materials. We report the second example of a porous coordination network that exhibits a sorbate-induced shape-memory effect and the first in which multiple sorbates, N2, CO2 and CO promote this effect. The material, a new threefold interpenetrated pcu network, [Zn2(4,4'-biphenyldicarboxylate)2(1,4-bis(4-pyridyl)benzene)]n (X-pcu-3-Zn-3i), exhibits three distinct phases: the as-synthesized α phase; a denser-activated ß phase; and a shape-memory γ phase, which is intermediate in density between the α and ß phases. The γ phase is kinetically stable over multiple adsorption/desorption cycles and only reverts to the ß phase when heated at >400 K under vacuum. The α phase can be regenerated by soaking the γ phase in N,N'-dimethylformamide. Single-crystal x-ray crystallography studies of all three phases provide insight into the shape-memory phenomenon by revealing the nature of interactions between interpenetrated networks. The ß and γ phases were further investigated by in situ coincidence powder x-ray diffraction, and their sorption isotherms were replicated by density functional theory calculations. Analysis of the structural information concerning the three phases of X-pcu-3-Zn-3i enabled us to understand structure-function relationships and propose crystal engineering principles for the design of more examples of shape-memory porous materials.

8.
Chem Commun (Camb) ; 54(28): 3488-3491, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561019

RESUMO

Phases of a 2-fold pcu hybrid ultramicroporous material (HUM), SIFSIX-14-Cu-i, exhibiting 99%, 93%, 89%, and 70% partial interpenetration have been obtained. 1 : 99 C2H2/C2H4 gas separation studies reveal that as the proportion of interpenetrated component decreases, so does the separation performance.

9.
Angew Chem Int Ed Engl ; 57(17): 4657-4662, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29457972

RESUMO

A majority of metal-organic frameworks (MOFs) fail to preserve their physical and chemical properties after exposure to acidic, neutral, or alkaline aqueous solutions, therefore limiting their practical applications in many areas. The strategy demonstrated herein is the design and synthesis of an organic ligand that behaves as a buffer to drastically boost the aqueous stability of a porous MOF (JUC-1000), which maintains its structural integrity at low and high pH values. The local buffer environment resulting from the weak acid-base pairs of the custom-designed organic ligand also greatly facilitates the performance of JUC-1000 in the chemical fixation of carbon dioxide under ambient conditions, outperforming a series of benchmark catalysts.

10.
Angew Chem Int Ed Engl ; 57(13): 3332-3336, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29377460

RESUMO

Removal of CO2 from CO gas mixtures is a necessary but challenging step during production of ultra-pure CO as processed from either steam reforming of hydrocarbons or CO2 reduction. Herein, two hybrid ultramicroporous materials (HUMs), SIFSIX-3-Ni and TIFSIX-2-Cu-i, which are known to exhibit strong affinity for CO2 , were examined with respect to their performance for this separation. The single-gas CO sorption isotherms of these HUMs were measured for the first time and are indicative of weak affinity for CO and benchmark CO2 /CO selectivity (>4000 for SIFSIX-3-Ni). This prompted us to conduct dynamic breakthrough experiments and compare performance with other porous materials. Ultra-pure CO (99.99 %) was thereby obtained from CO gas mixtures containing both trace (1 %) and bulk (50 %) levels of CO2 in a one-step physisorption-based separation process.

11.
Phys Chem Chem Phys ; 20(3): 1761-1777, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29270586

RESUMO

Grand canonical Monte Carlo (GCMC) simulations of gas sorption were performed in Cu-TDPAH, also known as rht-MOF-9, hereafter [1], a metal-organic framework (MOF) with rht topology consisting of Cu2+ ions coordinated to 2,5,8-tris(3,5-dicarboxyphenylamino)-1,3,4,6,7,9,9b-heptaazaphenalene (TDPAH) ligands. This MOF is notable for the presence of open-metal copper sites and high nitrogen content on the linkers. [1] Exhibits one of the highest experimental H2 uptakes at 77 K/1 atm within the extant rht-MOF family (ca. 2.72 wt%) and also has strong affinity for CO2 (5.83 mmol g-1 at 298 K/1 atm). Our simulations, which include explicit many-body polarization interactions, accurately modeled macroscopic thermodynamic properties (e.g., sorption isotherms and isosteric heats of adsorption (Qst)) as well as the binding sites for H2, CO2, CH4, C2H2, C2H4, and C2H6 in the MOF. Four different binding sites were observed through analysis of the radial distribution function (g(r)) about the two chemically distinct Cu2+ ions, simulated annealing calculations, and examination of the three-dimensional histogram showing the sites of occupancy: (1) at the Cu2+ ion facing toward the center of the linker (CuL), (2) at the Cu2+ ion facing away from the center of linker (CuC), (3) nestled between three [Cu2(O2CR)4] units in the corner of the truncated tetrahedral (T-Td) cage and (4) straddling the copper nuclei parallel to the axis of the Cu-Cu bond within the T-Td cage. The low-loading (initial) binding site in the MOF is highly sensitive to the partial charges of the Cu2+ ions that were used for parametrization. It was discovered that most sorbates prefer to sorb onto or near the Cu2+ ions that exhibit the greater partial positive charge (i.e., at site 1). The simulated H2 and CO2 sorption results obtained using a polarizable potential for the respective sorbates are in good agreement with the corresponding experimental data, especially near ambient pressure. Simulations of gas sorption were also performed in [1] using nonpolarizable potentials for the individual sorbates; these include potentials from the TraPPE force field for most sorbates.

12.
Phys Chem Chem Phys ; 19(43): 29204-29221, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29067398

RESUMO

Simulations of CO2 and H2 sorption were performed in an rht-metal-organic framework (MOF) that consists of Cu2+ ions coordinated to 5,5',5''-(4,4',4''-(benzene-1,3,5-triyl)tris(1H-1,2,3-triazole-4,1-diyl))triisophthalate (BTTI) linkers; it is referred to as Cu-BTTI herein. This MOF was previously synthesized and reported by three different experimental groups [Zhao et al., Sci. Rep., 2013, 3, 1149; Schröder et al., Chem. Sci., 2013, 4, 1731-1736; Hupp et al., Energy Environ. Sci., 2013, 6, 1158-1163]. This MOF is notable for the presence of open-metal sites and nitrogen-rich regions through the copper paddlewheel ([Cu2(O2CR)4]) clusters and 1,2,3-triazole groups, respectively, which allows this material to display remarkable CO2 and H2 sorption properties. All three groups report distinct experimental and theoretical gas sorption results for the MOF. In contrast to the force fields utilized in the aforementioned studies, our simulations include explicit many-body polarization interactions, which was important to reproduce sorption onto the open-metal sites. Simulations using polarizable potentials for the MOF and sorbates generated sorption isotherms and isosteric heat of adsorption (Qst) values that are outstanding agreement with the corresponding experimental data for all three groups; this is in contrast to the theoretical results presented in the respective original references. The simulations carried out in the previous studies often looked reasonable but they missed a key feature of the sorption process that lead to unreliable results. Analysis of the radial distribution function (g(r)) about the open-metal sites and examination of the modeled structure reveal that the CO2 and H2 molecules prefer to sorb onto two unique types of Cu2+ ions that exhibit the highest partial positive charges. Sorption was also observed within the corners of the truncated tetrahedral (T-Td) cages and onto the 1,2,3-triazole groups of the linkers for both sorbates. Overall, this study demonstrates how utilizing a classical polarizable force field led to the reproduction of experimental observables and allowed for an accurate description of the sorption mechanism in this MOF that is an important member of the rht-MOF family.

13.
Phys Chem Chem Phys ; 19(28): 18587-18602, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28686253

RESUMO

Simulations of CO2 and H2 sorption were performed in UTSA-20, a metal-organic framework (MOF) having zyg topology and composed of Cu2+ ions coordinated to 3,3',3'',5,5',5''-benzene-1,3,5-triyl-hexabenzoate (BHB) linkers. Previous experimental studies have shown that this MOF displays remarkable CO2 sorption properties and exhibits one of the highest gravimetric H2 uptakes at 77 K/1.0 atm (2.9 wt%) [Z. Guo, et al. Angew. Chem., Int. Ed., 2011, 50, 3178-3181]. For both sorbates, the simulations were executed with the inclusion of explicit many-body polarization interactions, which was necessary to reproduce sorption onto the open-metal sites. Non-polarizable potentials were also utilized for simulations of CO2 sorption as a control. The simulated excess sorption isotherms for both CO2 and H2 are in very good agreement with the corresponding experimental data over a wide range of temperatures and pressures, thus demonstrating the accuracy and predictive power of the polarizable potentials used herein. The theoretical isosteric heat of adsorption (Qst) values are also in good agreement with the newly reported experimental Qst values for the respective sorbates in UTSA-20. Sorption onto the more positively charged Cu2+ ion of the [Cu2(O2CR)4] cluster was observed for both CO2 and H2. However, a binding site with energetics comparable to that for an open-metal site was also discovered for both sorbates. A radial distribution function (g(r)) analysis about the preferential Cu2+ ions for CO2 and H2 revealed that both sorbates display different trends for the relative occupancy about such sites upon increasing/decreasing the pressure in the MOF. Overall, this study provides insights into the CO2 and H2 sorption mechanisms in this MOF containing open-metal sites and small pore sizes for the first time through a classical polarizable force field.

14.
Angew Chem Int Ed Engl ; 56(38): 11426-11430, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28707307

RESUMO

We present a crystal engineering strategy to fine tune the pore chemistry and CH4 -storage performance of a family of isomorphic MOFs based upon PCN-14. These MOFs exhibit similar pore size, pore surface, and surface area (around 3000 m2 g-1 ) and were prepared with the goal to enhance CH4 working capacity. [Cu2 (L2)(H2 O)2 ]n (NJU-Bai 41: NJU-Bai for Nanjing University Bai's group), [Cu2 (L3)(H2 O)2 ]n (NJU-Bai 42), and [Cu2 (L4)(DMF)2 ]n (NJU-Bai 43) were prepared and we observed that the CH4 volumetric working capacity and volumetric uptake values are influenced by subtle changes in structure and chemistry. In particular, the CH4 working capacity of NJU-Bai 43 reaches 198 cm3 (STP: 273.15 K, 1 atm) cm-3 at 298 K and 65 bar, which is amongst the highest reported for MOFs under these conditions and is much higher than the corresponding value for PCN-14 (157 cm3 (STP) cm-3 ).

15.
Phys Chem Chem Phys ; 19(20): 13075-13082, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28484768

RESUMO

A combined inelastic neutron scattering (INS) and theoretical study was carried out on H2 adsorbed in two covalent organic framework (COF) materials: COF-1 and COF-102. These COFs are synthesized from self-condensation reactions of 1,4-benzenediboronic acid (BDBA) and tetra(4-(dihydroxy)borylphenyl)methane (TBPM) molecules, respectively. Molecular simulations of H2 adsorption in COF-1 revealed that the H2 molecules occupy the region between two eclipsed layers of the COF. The most favorable H2 binding site in COF-1 is located between two B3O3 clusters of the eclipsed layers. Two distinct H2 binding sites were identified in COF-102 from the simulations: the B3O3 clusters and the phenyl rings of the tetraphenylmethyl units. Two-dimensional quantum rotation calculations for H2 adsorbed at the considered sites in both COFs resulted in rotational transitions that are in good agreement with those that appear in the corresponding INS spectra. Such calculations were important for interpreting the INS spectra in these materials. Calculation of the rotational potential energy surface for H2 bound at the most favorable adsorption site in COF-1 and COF-102 revealed unusually high rotational barriers that are attributed to the nature of the B3O3 rings. The values for these barriers to rotation are greater than or comparable to those observed in some metal-organic frameworks (MOFs) that possess open-metal sites. This study demonstrates the power of using INS experiments in conjunction with theoretical calculations to gain valuable insights into the nature of the binding sites and, for the first time, the rotational dynamics of H2 adsorbed in COFs.

16.
Chem Sci ; 8(3): 2373-2380, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451342

RESUMO

Dynamic and flexible metal-organic frameworks (MOFs) that respond to external stimuli, such as stress, light, heat, and the presence of guest molecules, hold promise for applications in chemical sensing, drug delivery, gas separations, and catalysis. A greater understanding of the relationship between flexible constituents in MOFs and gas adsorption may enable the rational design of MOFs with dynamic moieties and stimuli-responsive behavior. Here, we detail the effect of subtle structural changes upon the gas sorption behavior of two "SIFSIX" pillared square grid frameworks, namely SIFSIX-3-M (M = Ni, Fe). We observe a pronounced inflection in the Xe adsorption isotherm in the Ni variant. With evidence from X-ray diffraction studies, density functional theory, and molecular simulations, we attribute the inflection to a disordered to ordered transition of the rotational configurations of the pyrazine rings induced by sorbate-sorbent interactions. We also address the effect of cage size, temperature, and sorbate on the guest-induced ring rotation and the adsorption isotherms. The absence of an inflection in the Xe adsorption isotherm in SIFSIX-3-Fe and in the Kr, N2, and CO2 adsorption isotherms in SIFSIX-3-Ni suggest that the inflection is highly sensitive to the match between the size of the cage and the guest molecule.

17.
ACS Appl Mater Interfaces ; 9(39): 33395-33400, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28128918

RESUMO

A new hybrid ultramicroporous material, [Ni(1,4-di(pyridine-2-yl)benzene)2(Cr2O7)]n (DICRO-4-Ni-i), has been prepared and structurally characterized. Pure gas sorption isotherms and molecular modeling of sorbate-sorbent interactions imply strong selectivity for C2H2 over CO2 (SAC). Dynamic gas breakthrough coupled with temperature-programmed desorption experiments were conducted on DICRO-4-Ni-i and two other porous materials reported to exhibit high SAC, TIFSIX-2-Cu-i and MIL-100(Fe), using a C2H2/CO2/He (10:5:85) gas mixture. Whereas CO2/C2H2 coadsorption by MIL-100(Fe) mitigated the purity of trapped C2H2, negligible coadsorption and high SAC were observed for DICRO-4-Ni-i and TIFSIX-2-Cu-i.

18.
Langmuir ; 32(44): 11492-11505, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27749073

RESUMO

Molecular simulations of CO2 and H2 sorption were performed in MPM-1-Cl and MPM-1-TIFSIX, two robust molecular porous materials (MPMs) with the empirical formula [Cu2(adenine)4Cl2]Cl2 and [Cu2(adenine)4(TiF6)2], respectively. Recent experimental studies have shown that MPM-1-TIFSIX displayed higher CO2 uptake and isosteric heat of adsorption (Qst) than MPM-1-Cl [Nugent, P. S.; et al. J. Am. Chem. Soc. 2013, 135, 10950-10953]. This was verified through the simulations executed herein, as the presented simulated CO2 sorption isotherms and Qst values are in very good agreement with the corresponding experimental data for both MPMs. We also report experimental H2 sorption data in both MPMs. Experimental studies revealed that MPM-1-TIFSIX exhibits high H2 uptake at low loadings and an initial H2 Qst value of 9.1 kJ mol-1. This H2 Qst value is greater than that for a number of existing metal-organic frameworks (MOFs) and represents the highest yet reported for a MPM. The remarkable H2 sorption properties for MPM-1-TIFSIX have been confirmed through our simulations. The modeling studies revealed that only one principal sorption site is present for CO2 and H2 in MPM-1-Cl, which is sorption onto the Cl- counterions within the large channels. In contrast, three different sorption sites were discovered for both CO2 and H2 in MPM-1-TIFSIX: (1) between two TIFSIX groups within a small passage connecting the large channels, (2) onto the TIFSIX ions lining the large channels, and (3) within the small channels. This study illustrates the detailed insights that molecular simulations can provide on the CO2 and H2 sorption mechanism in MPMs.

19.
Phys Chem Chem Phys ; 18(31): 21421-30, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27426916

RESUMO

Simulations of H2 sorption were performed in PCN-14, a metal-organic framework (MOF) that consists of Cu(2+) ions coordinated to 5,5'-(9,10-anthracenediyl)diisophthalate (adip) linkers. This MOF displays an excess H2 uptake of 2.70 wt% at 77 K and 1.0 atm and an initial H2Qst value of 8.6 kJ mol(-1) according to previous experimental measurements. The experimental H2 sorption isotherms and Qst values in PCN-14 were reproduced in simulations using well-known H2 potentials that have been widely used for MOF-H2 theoretical studies. H2 sorption in PCN-14 was dominated by repulsion/dispersion energetics; this allowed the experimental observables to be reproduced by a model that includes only Lennard-Jones parameters. The most energetically favorable H2 sorption site in PCN-14 corresponds to sorption within a small cage that is enclosed by three [Cu2(O2CR)4] units and three adip linkers. The anthracenyl rings of the adip linkers represent the secondary sorption sites within the MOF. In contrast to expectations, sorption of H2 onto the Cu(2+) ions of the copper paddlewheels was not observed within the simulations at low loading. The simulations revealed that the open-metal sites in PCN-14 were occupied at high loading. Control simulations of H2 sorption in PCN-14 for different cases in which the partial positive charge of one of the paddlewheel Cu(2+) ions was increased relative to the other revealed that sorption onto the open-metal sites can be captured if there is a very high positive charge on the metal. Otherwise, the calculated partial charge for the Cu(2+) ions in PCN-14 in this work was not high enough in magnitude to facilitate strong H2-metal interactions in simulation. This study shows the power of using molecular simulations to elucidate an unusual H2 sorption behavior in a MOF.

20.
Angew Chem Int Ed Engl ; 55(35): 10268-72, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27439315

RESUMO

Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-ß, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-ß is stable to moisture and its separation performance is unaffected by humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA