Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471991

RESUMO

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Variação Genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Razão de Chances , Risco , Análise de Sequência de DNA , Adulto Jovem
2.
Hum Mutat ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300245

RESUMO

Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome (LFS), a cancer predisposition disorder inherited in an autosomal dominant pattern associated with high risk of malignancy, including early onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for twenty ACMG/AMP criteria while nine were deemed not applicable. The original strength level for ten criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data amongst experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification. This article is protected by copyright. All rights reserved.

3.
Cancer Genet ; 248-249: 11-17, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32966936

RESUMO

Pathogenic germline variants in the TP53 gene predispose to a wide range of cancers, known collectively as Li-Fraumeni syndrome (LFS). There has been much research aimed to identify genotype-phenotype correlations, that is, differences between variant location and/or effect and cancer spectrum. These correlations, should they exist, have potential to impact clinical management of carriers. Review of previously published studies showed a variety of study designs and inconsistency in reported findings. Here, we used pooled data from 427 TP53 carriers who had undergone multigene panel testing and 154 TP53 carriers identified by single-gene testing to investigate correlations between TP53 genotype (truncating variants, hotspot variants, other missense variants with dominant-negative effect, missense variants without dominant-negative effect) and a number of LFS-selected malignancies. Our results suggest that carriers of truncating and hotspot variants might be more likely to present with LFS cancers and have shorter time to first cancer diagnosis compared to carriers of other variant types. However, the differences observed were minor, and we conclude that there is currently insufficient evidence to consider location and/or molecular effect of pathogenic variants to assist with clinical management of TP53 carriers. Larger studies are necessary to confirm the correlations suggested by our analysis.

4.
Hum Mutat ; 41(9): 1555-1562, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32485079

RESUMO

Early onset breast cancer is the most common malignancy in women with Li-Fraumeni syndrome, caused by germline TP53 pathogenic variants. It has repeatedly been suggested that breast tumors from TP53 carriers are more likely to be HER2+ than those of noncarriers, but this information has not been incorporated into variant interpretation models for TP53. Breast tumor pathology is already being used quantitatively for assessing pathogenicity of germline variants in other genes, and it has been suggested that this type of evidence can be incorporated into current American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification. Here, by reviewing published data and using internal datasets separated by different age groups, we investigated if breast tumor HER2+ status has utility as a predictor of TP53 germline variant pathogenicity, considering age at diagnosis. Overall, our results showed that the identification of HER2+ breast tumors diagnosed before the age of 40 can be conservatively incorporated into the current TP53-specific ACMG/AMP PP4 criterion, following a point system detailed in this manuscript. Further larger studies will be needed to reassess the value of HER2+ breast tumors diagnosed at a later age.

5.
Hum Mutat ; 41(3): 537-542, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31898864

RESUMO

The American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant classification are widely used for clinical interpretation of gene test results. These guidelines may be specified to genes/syndromes of interest to improve their utility in the clinical setting. As part of these specifications, phenotype-related criteria can be detailed and weighted depending on the personal history of disease for a given variant carrier. We investigated how ascertainment can affect the significance and/or weight of patient phenotype as a predictor of germline-variant pathogenicity, using the Li-Fraumeni Syndrome gene TP53 as an example. Likelihood ratios in favor of variant pathogenicity were determined for a report of the personal history of several TP53-related cancers, using data from 2,656 probands undergoing single-gene testing (SGT) and 15,483 undergoing multi-gene panel testing (MGPT). Overall, TP53-associated cancers were more predictive of pathogenicity, and demonstrated greater evidence weight, in the MGPT versus SGT dataset. This observation is almost certainly explained by differences in proband ascertainment for the two streams of testing, and these findings have implications for germline-variant classification using ACMG/AMP guidelines.

6.
Cancer Genet ; 235-236: 21-27, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31296311

RESUMO

TP53 pathogenic germline variation is associated with the multi-cancer predisposition Li-Fraumeni syndrome (LFS). Next-generation sequencing and multigene panel testing are highlighting variability in the clinical presentation of patients with TP53 positive results. We aimed to investigate if the p53 variants considered as major hotspots at both germline and somatic levels (p.Arg175His, p.Gly245Asp, p.Gly245Ser, p.Arg248Gln, p.Arg248Trp, p.Arg273Cys, p.Arg273His, and p.Arg282Trp) were associated with poorer prognostic features compared to other pathogenic missense variants in the DNA-binding domain. To do so, we assessed clinical features from 1025 carriers of germline TP53 pathogenic variants (749 probands and 276 relatives) from three independent datasets (IARC TP53 Database, Ambry Single Gene Testing, and Ambry Multigene Panel Testing). We observed that, compared to carriers of non-hotspot germline variants, individuals that carried a hotspot germline variant were more likely to present with a Classic LFS phenotype, earlier age of first breast cancer onset, and shorter time to diagnosis to any cancer. Further studies with larger datasets addressing differences in cancer phenotypes by genotype are thus needed to replicate our findings and consider variant effect and position, towards future personalized clinical management of pathogenic variant carriers.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Variação Genética/genética , Genótipo , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Prognóstico
7.
Hum Mutat ; 40(6): 788-800, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840781

RESUMO

Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.


Assuntos
Biologia Computacional/métodos , Síndrome de Li-Fraumeni/genética , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/genética , Algoritmos , Simulação por Computador , Predisposição Genética para Doença , Humanos , Modelos Genéticos
8.
Hum Mutat ; 39(12): 1764-1773, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240537

RESUMO

Pathogenic germline variants in TP53 predispose carriers to the multi-cancer Li-Fraumeni syndrome (LFS). Widespread multigene panel testing is identifying TP53 pathogenic variants in breast cancer patients outside the strict clinical criteria recommended for LFS testing. We aimed to assess frequency and clinical implications of TP53 pathogenic variants in breast cancer cohorts ascertained outside LFS. Classification of TP53 germline variants reported in 59 breast cancer studies, and publicly available population control sets was reviewed and identified evidence for misclassification of variants. TP53 pathogenic variant frequency was determined for: breast cancer studies grouped by ascertainment characteristics; breast cancer cohorts undergoing panel testing; and population controls. Early age of breast cancer onset, regardless of family history or BRCA1/BRCA2 previous testing, had the highest pick-up rate for TP53 carriers. Patients at risk of hereditary breast cancer unselected for features of LFS carried TP53 pathogenic variants at a frequency comparable to that of other non-BRCA1/2 breast cancer predisposing genes, and ∼threefold more than reported in population controls. These results have implications for the implementation of TP53 testing in broader clinical settings, and suggest urgent need to investigate cancer risks associated with TP53 pathogenic variants in individuals outside the LFS spectrum.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Proteína Supressora de Tumor p53/genética , Idade de Início , Proteína BRCA1/genética , Proteína BRCA2/genética , Detecção Precoce de Câncer , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Síndrome de Li-Fraumeni/genética
9.
Hum Mutat ; 39(8): 1061-1069, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29775997

RESUMO

Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multisequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of nonfunctional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community.


Assuntos
Biologia Computacional/métodos , Mutação de Sentido Incorreto/genética , Proteína Supressora de Tumor p53/genética , Humanos , Software
10.
J Assist Reprod Genet ; 31(12): 1573-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227694

RESUMO

Primary ovarian insufficiency is one of the main causes of female infertility owing to an abnormal ovarian reserve. Its relevance has increased in more recent years due to the fact that age of motherhood is being delayed in developed countries, with the risk of having either primary ovarian insufficiency or less chances of pregnancy when women consider the option of having their first baby. Several exogenous factors can lead to this event, such us viral infections, metabolomic dysfunction, autoimmune diseases, and environmental or iatrogenic factors, although in most cases the mechanism that leads to the disorder is unknown. Genetic factors represent the most commonly identified cause and the impact of sex chromosome abnormalities (e.g., Turner syndrome or X structural abnormalities), autosomal and X-linked mutations on the genesis of primary ovarian insufficiency has also been well described. Yet in most cases, the genetic origin remains unknown and there are multiple candidate genes. This review aims to collect all the genetic abnormalities and genes associated with syndromic and non syndromic primary ovarian insufficiency that have been published in the literature to date using the candidate-gene approach and a genome-wide analysis.


Assuntos
Estudo de Associação Genômica Ampla , Infertilidade Feminina/genética , Insuficiência Ovariana Primária/genética , Aberrações dos Cromossomos Sexuais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Feminino , Humanos , Infertilidade Feminina/patologia , Gravidez , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA