Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
PLoS Negl Trop Dis ; 15(3): e0009232, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33657123

RESUMO

Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies.

2.
Sci Rep ; 11(1): 6677, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758296

RESUMO

Gallstone disease affects up to twenty percent of the population in western countries and is a significant contributor to morbidity and health care expenditure. Intestinal microbiota have variously been implicated as either contributing to gallstone formation or to be affected by cholecystectomy. We conducted a large-scale investigation on 404 gallstone carriers, 580 individuals post-cholecystectomy and 984 healthy controls with similar distributions of age, sex, body mass index, smoking habits, and food-frequency-score. All 1968 subjects were recruited from the population-based Study-of-Health-in-Pomerania (SHIP), which includes transabdominal gallbladder ultrasound. Fecal microbiota profiles were determined by 16S rRNA gene sequencing. No significant differences in microbiota composition were detected between gallstone carriers and controls. Individuals post-cholecystectomy exhibited reduced microbiota diversity, a decrease in the potentially beneficial genus Faecalibacterium and an increase in the opportunistic pathogen Escherichia/Shigella. The absence of an association between the gut microbiota and the presence of gallbladder stones suggests that there is no intestinal microbial risk profile increasing the likelihood of gallstone formation. Cholecystectomy, on the other hand, is associated with distinct microbiota changes that have previously been implicated in unfavorable health effects and may not only contribute to gastrointestinal infection but also to the increased colon cancer risk of cholecystectomized patients.

3.
Front Immunol ; 12: 636061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717182

RESUMO

Asthma and allergies are complex, chronic inflammatory diseases in which genetic and environmental factors are crucial. Protection against asthma and allergy development in the context of farming environment is established by early animal contact, unpasteurized milk consumption and gut microbiota maturation. The human ß-defensin 2 (hBD-2) is a host defense peptide present almost exclusively in epithelial tissues, with pronounced immunomodulatory properties, which has recently been shown to ameliorate asthma and IBD in animal models. We hypothesized that adequate hBD-2 secretion plays a role in the protection against asthma and allergy development and that genetic variations in the complex gene locus coding for hBD-2 may be a risk factor for developing these diseases, if as a consequence, hBD-2 is insufficiently produced. We used MALDI-TOF MS genotyping, sequencing and a RFLP assay to study the genetic variation including mutations, polymorphisms and copy number variations in the locus harboring both genes coding for hBD-2 (DEFB4A and DEFB4B). We administered hBD-2 orally in a mouse model of house dust mite (HDM)-asthma before allergy challenge to explore its prophylactic potential, thereby mimicking a protective farm effect. Despite the high complexity of the region harboring DEFB4A and DEFB4B we identified numerous genetic variants to be associated with asthma and allergy in the GABRIELA Ulm population of 1,238 children living in rural areas, including rare mutations, polymorphisms and a lack of the DEFB4A. Furthermore, we found that prophylactic oral administration of hBD-2 significantly curbed lung resistance and pulmonary inflammation in our HDM mouse model. These data indicate that inadequate genetic capacity for hBD-2 is associated with increased asthma and allergy risk while adequate and early hBD-2 administration (in a mouse model) prevents atopic asthma. This suggests that hBD-2 could be involved in the protective farm effect and may be an excellent candidate to confer protection against asthma development.

4.
J Hepatol ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33774059

RESUMO

BACKGROUND AND AIMS: Little is known on the composition of intrahepatic immune cells and their contribution to the pathogenesis of primary sclerosing cholangitis (PSC). We here aimed to create an atlas of intrahepatic T cells and thereby in detail characterize T cells in human inflamed liver. METHODS: Different single-cell RNA sequencing methods were combined with in silico analyses on intrahepatic and peripheral T cells from patients with PSC (n=11) and healthy donors (HD, n=4). Multi-parameter flow cytometry and functional in vitro experiments were conducted on patients with PSC (n=24) and controls (HCV, n=5; NASH, n=3; ALD, n=16; LRM, n=10; HD, n=10). RESULTS: We here present the landscape of intrahepatic T cells in PSC and reveal a population of intrahepatic naive-like CD4+ T cells, which was present in all liver diseases tested, but particularly expanded in PSC. This population had a transcriptome and T cell receptor repertoire similar to circulating naive T cells but expressed a set of genes associated with tissue residency. Their periductal location supported the concept of tissue-resident naive-like T cells in livers of patients with PSC. Trajectory inference suggested a developmental propensity of these cells to acquire a TH17 polarization-state. Functional and chromatin accessibility experiments revealed a predisposition of circulating naive T cells from patients with PSC to polarize towards TH17 cells. CONCLUSION: We report on the first atlas of intrahepatic T cells in PSC, which led to the identification of a previously unrecognized population of tissue-resident naive-like T cells in the inflamed human liver and to the finding that naive CD4+ T cells in PSC harbour the propensity to develop into TH17 cells. LAY SUMMARY: The composition of intrahepatic immune cells in primary sclerosing cholangitis (PSC) and their contribution to disease pathogenesis is widely unknown. We here generated a single-cell atlas of intrahepatic T cells in PSC, a type of immune cells that has previously been involved in the pathogenesis of PSC. This atlas provides a valuable data source to the field. Using that atlas, we identified a population of liver-resident naive-like CD4+ T cells which are expanded in livers of patients with PSC compared to healthy liver tissue and other liver diseases. Trajectory inference suggest that these cells have a propensity to acquire TH17-associated effector functions. Since TH17-polarized cells are considered to contribute to the development of PSC, our findings point towards a so far underestimated role of naive T cells in PSC.

6.
Sci Transl Med ; 13(582)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627483

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease without clear etiology or effective treatment. Genetic factors contribute to PSC pathogenesis, but so far, no causative mutation has been found. We performed whole-exome sequencing in a family with autosomal dominant inheritance of PSC and identified a heterozygous germline missense mutation in SEMA4D, encoding a K849T variant of CD100. The mutation was located in an evolutionarily conserved, unstructured cytosolic region of CD100 affecting downstream signaling. It was found to alter the function of CD100-expressing cells with a bias toward the T cell compartment that caused increased proliferation and impaired interferon-γ (IFN-γ) production after stimulation. Homologous mutation knock-in mice developed similar IFN-γ impairment in T cells and were more prone to develop severe cholangitis when exposed to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Transfer of wild-type T cells to knock-in mice before and during DDC exposure attenuated cholangitis. Taken together, we identified an inherited mutation in the disordered cytosolic region of CD100 resulting in T cell functional defects. Our findings suggest a protective role for T cells in PSC that might be used therapeutically.

7.
Sci Rep ; 11(1): 4363, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623101

RESUMO

Laboratory testing for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of two pillars: the detection of viral RNA via rt-PCR as the diagnostic gold standard in acute cases, and the detection of antibodies against SARS-CoV-2. However, concerning the latter, questions remain about their diagnostic and prognostic value and it is not clear whether all patients develop detectable antibodies. We examined sera from 347 Spanish COVID-19 patients, collected during the peak of the epidemic outbreak in Spain, for the presence of IgA and IgG antibodies against SARS-CoV-2 and evaluated possible associations with age, sex and disease severity (as measured by duration of hospitalization, kind of respiratory support, treatment in ICU and death). The presence and to some degree the levels of anti-SARS-CoV-2 antibodies depended mainly on the amount of time between onset of symptoms and the collection of serum. A subgroup of patients did not develop antibodies at the time of sample collection. Compared to the patients that did, no differences were found. The presence and level of antibodies was not associated with age, sex, duration of hospitalization, treatment in the ICU or death. The case-fatality rate increased exponentially with older age. Neither the presence, nor the levels of anti-SARS-CoV-2 antibodies served as prognostic markers in our cohort. This is discussed as a possible consequence of the timing of the sample collection. Age is the most important risk factor for an adverse outcome in our cohort. Some patients appear not to develop antibodies within a reasonable time frame. It is unclear, however, why that is, as these patients differ in no respect examined by us from those who developed antibodies.


Assuntos
Anticorpos Antivirais/imunologia , /imunologia , /patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Espanha
8.
Thromb Haemost ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33592630

RESUMO

Previous genome-wide association studies (GWASs) have established several susceptibility genes for venous thromboembolism (VTE) and suggested many others. However, a large proportion of the genetic variance in VTE remains unexplained. Here, we report genome-wide single- and multimarker as well as gene-level associations with VTE in 964 cases and 899 healthy controls of European ancestry. We report 19 loci at the genome-wide level of association (p ≤ 5 × 10-8). Our results add to the strong support for the association of genetic variants in F5, NME7, ABO, and FGA with VTE, and identify several loci that have not been previously associated with VTE. Altogether, our novel findings suggest that 20 susceptibility genes for VTE were newly discovered by our study. These genes may impact the production and prothrombotic functions of platelets, endothelial cells, and white and red blood cells. Moreover, the majority of these genes have been previously associated with cardiovascular diseases and/or risk factors for VTE. Future studies are warranted to validate our findings and to investigate the shared genetic architecture with susceptibility factors for other cardiovascular diseases impacting VTE risk.

9.
Exp Dermatol ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394553

RESUMO

Pemphigus foliaceus (PF) is an autoimmune blistering disease of the skin, clinically characterized by erosions and, histopathologically, by acantholysis. PF is endemic in the Brazilian Central-Western region. Numerous single nucleotide polymorphisms (SNPs) have been shown to affect the susceptibility for PF, including SNPs at long non-coding RNA (lncRNA) genes, which are known to participate in many physiological and pathogenic processes, such as autoimmunity. Here, we investigated whether the genetic variation of immune-related lncRNA genes affects the risk for endemic and sporadic forms of PF. We analysed 692 novel SNPs for PF from 135 immune-related lncRNA genes in 227 endemic PF patients and 194 controls. The SNPs were genotyped by Illumina microarray and analysed by applying logistic regression at additive model, with correction for sex and population structure. Six associated SNPs were also evaluated in an independent German cohort of 76 sporadic PF patients and 150 controls. Further, we measured the expression levels of two associated lncRNA genes (LINC-PINT and LY86-AS1) by quantitative PCR, stratified by genotypes, in peripheral blood mononuclear cells of healthy subjects. We found 27 SNPs in 11 lncRNA genes associated with endemic PF (p < .05 without overlapping with protein-coding genes). Among them, the LINC-PINT SNP rs10228040*A (OR = 1.47, p = .012) was also associated with increased susceptibility for sporadic PF (OR = 2.28, p = .002). Moreover, the A+ carriers of LY86-AS1*rs12192707 mark lowest LY86-AS1 RNA levels, which might be associated with a decreasing autoimmune response. Our results suggest a critical role of lncRNA variants in immunopathogenesis of both PF endemic and sporadic forms.

10.
Elife ; 102021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399535

RESUMO

COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However, neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T-cell response nor the diversity of resulting immune memory is well understood. In this study, we use longitudinal high-throughput T-cell receptor (TCR) sequencing to track changes in the T-cell repertoire following two mild cases of COVID-19. In both donors, we identified CD4+ and CD8+ T-cell clones with transient clonal expansion after infection. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurrence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors, the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T-cell clones were detected in the memory fraction at the pre-infection time point, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.


Assuntos
/imunologia , Memória Imunológica , Receptores de Antígenos de Linfócitos T/genética , Sequência de Aminoácidos , Reações Cruzadas , Mapeamento de Epitopos , Feminino , Biblioteca Gênica , Teste de Histocompatibilidade , Humanos , Estudos Longitudinais , Masculino , Receptores de Antígenos de Linfócitos T/química , Índice de Gravidade de Doença , Linfócitos T/imunologia
11.
Gastroenterology ; 160(5): 1784-1798.e0, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387530

RESUMO

BACKGROUND & AIMS: To influence host and disease phenotype, compositional microbiome changes, which have been demonstrated in patients with primary sclerosing cholangitis (PSC), must be accompanied by functional changes. We therefore aimed to characterize the genetic potential of the gut microbiome in patients with PSC compared with healthy controls (HCs) and patients with inflammatory bowel disease (IBD). METHODS: Fecal DNA from 2 cohorts (1 Norwegian and 1 German), in total comprising 136 patients with PSC (58% with IBD), 158 HCs, and 93 patients with IBD without PSC, were subjected to metagenomic shotgun sequencing, generating 17 billion paired-end sequences, which were processed using HUMAnN2 and MetaPhlAn2, and analyzed using generalized linear models and random effects meta-analyses. RESULTS: Patients with PSC had fewer microbial genes compared with HCs (P < .0001). Compared with HCs, patients with PSC showed enrichment and increased prevalence of Clostridium species and a depletion of, for example, Eubacterium spp and Ruminococcus obeum. Patients with PSC showed marked differences in the abundance of genes related to vitamin B6 synthesis and branched-chain amino acid synthesis (Qfdr < .05). Targeted metabolomics of plasma from an independent set of patients with PSC and controls found reduced concentrations of vitamin B6 and branched-chain amino acids in PSC (P < .0001), which strongly associated with reduced liver transplantation-free survival (log-rank P < .001). No taxonomic or functional differences were detected between patients with PSC with and without IBD. CONCLUSIONS: The gut microbiome in patients with PSC exhibits large functional differences compared with that in HCs, including microbial metabolism of essential nutrients. Alterations in related circulating metabolites associated with disease course, suggesting that microbial functions may be relevant for the disease process in PSC.

12.
Nat Genet ; 53(2): 147-155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462482

RESUMO

The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory1,2, neurologic3 and neoplastic diseases4. Recent genome-wide association studies yielded inconsistent, underpowered and rarely replicated results such that the role of human host genetics as a contributing factor to microbiome assembly and structure remains uncertain5-11. Nevertheless, twin studies clearly suggest host genetics as a driver of microbiome composition11. In a genome-wide association analysis of 8,956 German individuals, we identified 38 genetic loci to be associated with single bacteria and overall microbiome composition. Further analyses confirm the identified associations of ABO histo-blood groups and FUT2 secretor status with Bacteroides and Faecalibacterium spp. Mendelian randomization analysis suggests causative and protective effects of gut microbes, with clade-specific effects on inflammatory bowel disease. This holistic investigative approach of the host, its genetics and its associated microbial communities as a 'metaorganism' broaden our understanding of disease etiology, and emphasize the potential for implementing microbiota in disease treatment and management.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Microbioma Gastrointestinal/genética , Bacteroides/genética , Faecalibacterium/genética , Fucosiltransferases/genética , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Lactase/genética , Desequilíbrio de Ligação , Análise da Randomização Mendeliana
13.
Commun Biol ; 4(1): 113, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495542

RESUMO

The Wartberg culture (WBC, 3500-2800 BCE) dates to the Late Neolithic period, a time of important demographic and cultural transformations in western Europe. We performed genome-wide analyses of 42 individuals who were interred in a WBC collective burial in Niedertiefenbach, Germany (3300-3200 cal. BCE). The results showed that the farming population of Niedertiefenbach carried a surprisingly large hunter-gatherer ancestry component (34-58%). This component was most likely introduced during the cultural transformation that led to the WBC. In addition, the Niedertiefenbach individuals exhibited a distinct human leukocyte antigen gene pool, possibly reflecting an immune response that was geared towards detecting viral infections.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33491046

RESUMO

Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62,488 common and rare coding variants in 1,248 German long-lived individuals, including 599 centenarians and 6,941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery P-value (1x10E-04). Furthermore, we validated the previously reported longevity locus cyclin dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified two new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, i.e. the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).

15.
Immunity ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33296686

RESUMO

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.

16.
Immunity ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33296687

RESUMO

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.

17.
Therap Adv Gastroenterol ; 13: 1756284820959252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281934

RESUMO

Background: Crohn's disease (CD) may progress from an inflammatory to a stricturing or penetrating disease phenotype. The aim of our study was to identify single nucleotide polymorphisms (SNPs) that predict disease progression in patients of the Swiss IBD Cohort Study (SIBDCS). Methods: We applied a multi-state Markov model for progression behavior of CD with three behavioral states according to the Montreal classification. The model considered transition from B1 to B2/B3 or from B2 to B3 stage. Model dynamics were summarized with transition intensities by including the effect of SNPs and calculating transition intensities for each SNP. Results: We included 1276 CD patients [669 (52.4%) B1, 248 (19.4%) B2, 359 (28.1%) B3 patients] with a median follow-up of 6.8 (interquartile range = 3.6-9.1; range 0-11.6) years. Probability for a B1 patient to develop a stenosis (B1 to B2, q = 0.033) was twice as much as compared to developing a penetrating complication (B3) during the disease course. In contrast, the probability of entering B3 stage was similar regardless of whether antecedent stricture was present (B2 to B3, q = 0.016) or not (B1 to B3, q = 0.016). We identified SNPs within the gene loci encoding ZMIZ1, LOC105373831 and KSR1 as carrying the highest risk for progression to B3, while the presence of SNPs within gene loci TNFSF15 and CEBPB-PTPN1 protected from progression to B2 or B3. Conclusion: We identified new genetic risk factors that can predict disease course in CD patients. A closer understanding on the functional impact of these genetic variations might improve our treatment options finally to prevent disease progression in CD patients.

18.
Transl Psychiatry ; 10(1): 403, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33223526

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aß) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aß42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aß38 and CSF-Aß40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aß and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.

19.
Gut ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168600

RESUMO

OBJECTIVE: The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN: A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS: The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION: This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33159471

RESUMO

BACKGROUND: Primary sclerosing cholangitis (PSC) is associated with progressive liver disease and cholangiocarcinoma. Although risk stratification is crucial for making clinical decisions, it is hindered by a scarcity of proven prognostic markers. AIMS: To assess the value of novel anti-glycoprotein 2 (anti-GP2) and anti-neutrophil cytoplasmic antibodies to serine proteinase 3 (PR3-ANCA) in combination with PSC-specific clinical and laboratory markers as predictors of quality of life, disease severity, and cholangiocarcinoma in two large, independent cohorts of PSC patients METHODS: Discovery (338 Polish patients) and validation (178 German patients) cohorts with PSC were evaluated. Anti-GP2 (isoforms 1/4) was detected by ELISAs and PR3-ANCA by chemiluminescence immunoassay. Clinical and laboratory data were collected and analysed. The outcome was defined as liver transplantation-free survival and occurrence of cholangiocarcinoma during follow-up. RESULTS: In the discovery group, anti-GP21/4 IgA and PR3-ANCA were associated with liver dysfunction, anti-GP21/4 IgA with risk scores for PSC and anti-GP24 IgA with cirrhosis. All cholangiocarcinoma patients were positive for PR3-ANCA and/or anti-GP24 IgA. The association between anti-GP2 IgA and liver biochemistry, risk scores, cirrhosis, impaired survival, and cholangiocarcinoma was confirmed in the validation cohort. Cox proportional-hazards regression indicated anti-GP21 IgA as an independent variable of poor outcome in both study cohorts. Analysis of the combined data showed that anti-GP24 IgA and PR3-ANCA were independent predictors for cholangiocarcinoma, while anti-GP21 IgA and PR3-ANCA were indicators for poor survival. CONCLUSIONS: Anti-GP2 and PR3-ANCA are prognostic antibodies in PSC as they identify patients at risk of severe disease, poor survival and biliary cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...