Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Transl Med ; 13(581)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597266

RESUMO

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.

2.
Ann Surg Oncol ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230747

RESUMO

BACKGROUND: Adjuvant radiation therapy (RT) can decrease lymph node basin (LNB) recurrences in patients with clinically evident melanoma lymph node (LN) metastases following lymphadenectomy, but its role in the era of modern systemic therapies (ST), immune checkpoint or BRAF/MEK inhibitors, is unclear. PATIENTS AND METHODS: Patients at four institutions who underwent lymphadenectomy (1/1/2010-12/31/2019) for clinically evident melanoma LN metastases and received neoadjuvant and/or adjuvant ST with RT, or ST alone, but met indications for RT, were identified. Comparisons were made between ST alone and ST/RT groups. The primary outcome was 3-year cumulative incidence (CI) of LNB recurrence. Secondary outcomes included 3-year incidences of in-transit/distant recurrence and survival estimates. RESULTS: Of 98 patients, 76 received ST alone and 22 received ST/RT. Median follow-up time for patients alive at last follow-up was 44.6 months. The ST/RT group had fewer inguinal node metastases (ST 36.8% versus ST/RT 9.1%; P = 0.04), and more extranodal extension (ST 50% versus ST/RT 77.3%; P = 0.02) and positive lymphadenectomy margins (ST 2.6% versus ST/RT 13.6%; P = 0.04). The 3-year CI of LNB recurrences was lower for the ST/RT group compared with the ST group (13.9% versus 25.2%), but this reduction was not statistically significant (P = 0.36). Groups did not differ significantly in in-transit/distant recurrences (P = 0.24), disease-free survival (P = 0.14), or melanoma-specific survival (P = 0.20). CONCLUSIONS: In the era of modern ST, RT may still have value in reducing LNB recurrences in melanoma with clinical LN metastases. Further research should focus on whether select patient populations derive benefit from combination therapy, and optimizing indications for RT following neoadjuvant ST.

3.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188016

RESUMO

Immune checkpoint inhibitors (ICIs) show promise, but most patients do not respond. We identify and validate biomarkers from extracellular vesicles (EVs), allowing non-invasive monitoring of tumor- intrinsic and host immune status, as well as a prediction of ICI response. We undertook transcriptomic profiling of plasma-derived EVs and tumors from 50 patients with metastatic melanoma receiving ICI, and validated with an independent EV-only cohort of 30 patients. Plasma-derived EV and tumor transcriptomes correlate. EV profiles reveal drivers of ICI resistance and melanoma progression, exhibit differentially expressed genes/pathways, and correlate with clinical response to ICI. We created a Bayesian probabilistic deconvolution model to estimate contributions from tumor and non-tumor sources, enabling interpretation of differentially expressed genes/pathways. EV RNA-seq mutations also segregated ICI response. EVs serve as a non-invasive biomarker to jointly probe tumor-intrinsic and immune changes to ICI, function as predictive markers of ICI responsiveness, and monitor tumor persistence and immune activation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33015529

RESUMO

PURPOSE: Conventional cytotoxic therapies increase the risk of clonal hematopoiesis and select for TP53-mutant clones, which carry a high risk for transformation to therapy-related myelodysplastic neoplasms. In contrast, the effect of immune checkpoint blockade (ICB) on clonal hematopoiesis is unknown. METHODS: Paired peripheral-blood samples taken before and after treatment with ICB were obtained for 91 patients with either cutaneous melanoma or basal cell carcinoma. Error-corrected sequencing of a targeted panel of genes recurrently mutated in clonal hematopoiesis was performed on peripheral-blood genomic DNA. RESULTS: The average interval between acquisition of the paired samples was 180 days. Forty-one percent of the patients had clonal hematopoiesis at a variant allele frequency (VAF) > 0.01 in the pretreatment sample. There was near-complete agreement in the distribution and burden of clonal hematopoiesis mutations in the paired blood samples, with 87 of 88 mutations identified across the cohort present in paired samples, regardless of the duration between sample collection. The VAF in the paired samples also showed a high correlation, with an R 2 = 0.95 (P < .0001). In contrast to cytotoxic therapy, exposure to ICB did not lead to selection of TP53- or PPM1D-mutant clones. However, consistent with the known effects of DNA-damaging therapy, we identified one patient who had eight unique TP53 mutations in the posttreatment blood sample after receiving two courses of radiation therapy. CONCLUSION: There was no expansion of hematopoietic clones or selection for clones at high risk for malignant transformation in patients who received ICB, observations that warrant further validation in larger cohorts. These findings highlight an important difference between ICB and conventional cytotoxic therapies and their respective impacts on premalignant genetic lesions.

5.
Clin Cancer Res ; 26(22): 6039-6050, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32820016

RESUMO

PURPOSE: The extracellular matrix (ECM) is an intriguing, yet understudied component of therapy resistance. Here, we investigated the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant melanoma to BRAF inhibitor (BRAFi) therapy. EXPERIMENTAL DESIGN: Publicly available RNA-sequencing data and reverse phase protein array were used to determine the relevance of MT1-MMP upregulation in BRAFi-resistant melanoma in patients, patient-derived xenografts, and cell line-derived tumors. Short hairpin RNA (shRNA)-mediated knockdown of MT1-MMP, inhibition via the selective MT1-MMP/MMP2 inhibitor, ND322, or overexpression of MT1-MMP was used to assess the role of MT1-MMP in mediating resistance to BRAFi. RESULTS: MT1-MMP was consistently upregulated in posttreatment tumor samples derived from patients upon disease progression and in melanoma xenografts and cell lines that acquired resistance to BRAFi. shRNA- or ND322-mediated inhibition of MT1-MMP synergized with BRAFi leading to resensitization of resistant cells and tumors to BRAFi. The resistant phenotype depends on the ability of cells to cleave the ECM. Resistant cells seeded in MT1-MMP uncleavable matrixes were resensitized to BRAFi similarly to MT1-MMP inhibition. This is due to the inability of cells to activate integrinß1 (ITGB1)/FAK signaling, as restoration of ITGB1 activity is sufficient to maintain resistance to BRAFi in the context of MT1-MMP inhibition. Finally, the increase in MT1-MMP in BRAFi-resistant cells is TGFß dependent, as inhibition of TGFß receptors I/II dampens MT1-MMP overexpression and restores sensitivity to BRAF inhibition. CONCLUSIONS: BRAF inhibition results in a selective pressure toward higher expression of MT1-MMP. MT1-MMP is pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.

6.
Nat Commun ; 11(1): 3946, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770055

RESUMO

Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Melanoma/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , RNA-Seq , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T Citotóxicos/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Res ; 18(10): 1560-1573, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32571981

RESUMO

Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.

8.
Cancer Discov ; 10(9): 1282-1295, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32499221

RESUMO

Older patients with melanoma (>50 years old) have poorer prognoses and response rates to targeted therapy compared with young patients (<50 years old), which can be driven, in part, by the aged microenvironment. Here, we show that aged dermal fibroblasts increase the secretion of neutral lipids, especially ceramides. When melanoma cells are exposed to the aged fibroblast lipid secretome, or cocultured with aged fibroblasts, they increase the uptake of lipids via the fatty acid transporter FATP2, which is upregulated in melanoma cells in the aged microenvironment and known to play roles in lipid synthesis and accumulation. We show that blocking FATP2 in melanoma cells in an aged microenvironment inhibits their accumulation of lipids and disrupts their mitochondrial metabolism. Inhibiting FATP2 overcomes age-related resistance to BRAF/MEK inhibition in animal models, ablates tumor relapse, and significantly extends survival time in older animals. SIGNIFICANCE: These data show that melanoma cells take up lipids from aged fibroblasts, via FATP2, and use them to resist targeted therapy. The response to targeted therapy is altered in aged individuals because of the influences of the aged microenvironment, and these data suggest FATP2 as a target to overcome resistance.See related commentary by Montal and White, p. 1255.This article is highlighted in the In This Issue feature, p. 1241.

9.
Clin Cancer Res ; 25(23): 7202-7217, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515463

RESUMO

PURPOSE: Combined MAPK pathway inhibition using dual BRAF and MEK inhibitors has prolonged the duration of clinical response in patients with BRAFV600E-driven tumors compared with either agent alone. However, resistance frequently arises. EXPERIMENTAL DESIGN: We generated cell lines resistant to dual BRAF/MEK inhibition and utilized a pharmacologic synthetic lethal approach to identify a novel, adaptive resistance mechanism mediated through the fibroblast growth factor receptor (FGFR) pathway. RESULTS: In response to drug treatment, transcriptional upregulation of FGF1 results in autocrine activation of FGFR, which potentiates extracellular signal-regulated kinases (ERK) activation. FGFR inhibition overcomes resistance to dual BRAF/MEK inhibitors in both cell lines and patient-derived xenograft (PDX) models. Abrogation of this bypass mechanism in the first-line setting enhances tumor killing and prevents the emergence of drug-resistant cells. Moreover, clinical data implicate serum FGF1 levels in disease prognosis. CONCLUSIONS: Taken together, these results describe a new, adaptive resistance mechanism that is more commonly observed in the context of dual BRAF/MEK blockade as opposed to single-agent treatment and reveal the potential clinical utility of FGFR-targeting agents in combination with BRAF and MEK inhibitors as a promising strategy to forestall resistance in a subset of BRAF-driven cancers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Fator 1 de Crescimento de Fibroblastos/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose , Comunicação Autócrina , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Nus , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Clin Cancer Res ; 25(22): 6852-6867, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375515

RESUMO

PURPOSE: Treatment of BRAFV600E -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi. EXPERIMENTAL DESIGN: By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi. We further investigated the effects of MAPKi on fatty acid metabolism using in vitro and in vivo models and analyzing patients' pre- and on-treatment tumor specimens. RESULTS: Melanoma cells treated with MAPKi displayed increased levels of CD36 and of PPARα-mediated and carnitine palmitoyltransferase 1A (CPT1A)-dependent fatty acid oxidation (FAO). While CD36 is a useful marker of melanoma cells during adaptation and drug-tolerant phases, the upregulation of CD36 is not functionally involved in FAO changes that characterize MAPKi-treated cells. Increased FAO is required for BRAFV600E -mutant melanoma cells to survive under the MAPKi-induced metabolic stress prior to acquiring drug resistance. The upfront and concomitant inhibition of FAO, glycolysis, and MAPK synergistically inhibits tumor cell growth in vitro and in vivo. CONCLUSIONS: Thus, we identified a clinically relevant therapeutic approach that has the potential to improve initial responses and to delay acquired drug resistance of BRAFV600E -mutant melanoma.


Assuntos
Adaptação Biológica , Ácidos Graxos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mutação , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Animais , Biomarcadores , Antígenos CD36/genética , Antígenos CD36/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genótipo , Glicólise , Humanos , Imunofenotipagem , Melanoma/patologia , Camundongos , Modelos Biológicos , Estadiamento de Neoplasias , PPAR alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Immunity ; 50(6): 1498-1512.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31097342

RESUMO

Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Commun ; 10(1): 1492, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940817

RESUMO

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Assuntos
Proliferação de Células , Microbioma Gastrointestinal , Melanoma/imunologia , Melanoma/microbiologia , Proteínas de Membrana/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Melanoma/enzimologia , Melanoma/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Resposta a Proteínas não Dobradas
13.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858180

RESUMO

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Assuntos
Biologia Computacional , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Melanoma/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoterapia , Masculino , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Mutações Sintéticas Letais
16.
Cancer Discov ; 9(3): 396-415, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563872

RESUMO

Resistance to BRAF and MEK inhibitors (BRAFi + MEKi) in BRAF-mutant tumors occurs through heterogeneous mechanisms, including ERK reactivation and autophagy. Little is known about the mechanisms by which ERK reactivation or autophagy is induced by BRAFi + MEKi. Here, we report that in BRAF-mutant melanoma cells, BRAFi + MEKi induced SEC61-dependent endoplasmic reticulum (ER) translocation of the MAPK pathway via GRP78 and KSR2. Inhibition of ER translocation prevented ERK reactivation and autophagy. Following ER translocation, ERK exited the ER and was rephosphorylated by PERK. Reactivated ERK phosphorylated ATF4, which activated cytoprotective autophagy. Upregulation of GRP78 and phosphorylation of ATF4 were detected in tumors of patients resistant to BRAFi + MEKi. ER translocation of the MAPK pathway was demonstrated in therapy-resistant patient-derived xenografts. Expression of a dominant-negative ATF4 mutant conferred sensitivity to BRAFi + MEKi in vivo. This mechanism reconciles two major targeted therapy resistance pathways and identifies druggable targets, whose inhibition would likely enhance the response to BRAFi + MEKi. SIGNIFICANCE: ERK reactivation and autophagy are considered distinct resistance pathways to BRAF + MEK inhibition (BRAFi + MEKi) in BRAF V600E cancers. Here, we report BRAFi + MEKi-induced ER translocation of the MAPK pathway is necessary for ERK reactivation, which drives autophagy. The ER translocation mechanism is a major druggable driver of resistance to targeted therapy.This article is highlighted in the In This Issue feature, p. 305.


Assuntos
Retículo Endoplasmático/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Proteínas de Choque Térmico/metabolismo , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transporte Proteico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell ; 175(4): 984-997.e24, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388455

RESUMO

Immune checkpoint inhibitors (ICIs) produce durable responses in some melanoma patients, but many patients derive no clinical benefit, and the molecular underpinnings of such resistance remain elusive. Here, we leveraged single-cell RNA sequencing (scRNA-seq) from 33 melanoma tumors and computational analyses to interrogate malignant cell states that promote immune evasion. We identified a resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion. The program is expressed prior to immunotherapy, characterizes cold niches in situ, and predicts clinical responses to anti-PD-1 therapy in an independent cohort of 112 melanoma patients. CDK4/6-inhibition represses this program in individual malignant cells, induces senescence, and reduces melanoma tumor outgrowth in mouse models in vivo when given in combination with immunotherapy. Our study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.


Assuntos
Antineoplásicos/uso terapêutico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/imunologia , Evasão Tumoral , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Masculino , Melanoma/tratamento farmacológico , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
18.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388456

RESUMO

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Transcriptoma , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Apirase/antagonistas & inibidores , Apirase/imunologia , Linhagem Celular Tumoral , Humanos , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Transcrição de Linfócitos T/metabolismo
19.
Nat Med ; 24(12): 1942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30333558

RESUMO

In the version of this article originally published, there was an error in the URL linked to by an accession code in the data availability section of the methods. The erroneous URL was: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100351 . The correct URL is: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115821 . The error has been corrected in the HTML and PDF versions of this article.

20.
Nat Med ; 24(10): 1545-1549, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30127394

RESUMO

Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains and has been very successful in treatment of melanoma. However, only a subset of patients with advanced tumors currently benefit from ICB therapies, which at times incur considerable side effects and costs. Constructing predictors of patient response has remained a serious challenge because of the complexity of the immune response and the shortage of large cohorts of ICB-treated patients that include both 'omics' and response data. Here we build immuno-predictive score (IMPRES), a predictor of ICB response in melanoma which encompasses 15 pairwise transcriptomics relations between immune checkpoint genes. It is based on two key conjectures: (i) immune mechanisms underlying spontaneous regression in neuroblastoma can predict melanoma response to ICB, and (ii) key immune interactions can be captured via specific pairwise relations of the expression of immune checkpoint genes. IMPRES is validated on nine published datasets1-6 and on a newly generated dataset with 31 patients treated with anti-PD-1 and 10 with anti-CTLA-4, spanning 297 samples in total. It achieves an overall accuracy of AUC = 0.83, outperforming existing predictors and capturing almost all true responders while misclassifying less than half of the nonresponders. Future studies are warranted to determine the value of the approach presented here in other cancer types.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Melanoma/imunologia , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Antígeno CTLA-4/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia/efeitos adversos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/patologia , Receptor de Morte Celular Programada 1/imunologia , Remissão Espontânea , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...