Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 639, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479486

RESUMO

BACKGROUND: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.


Assuntos
Bacillus thuringiensis , Besouros , Praguicidas , Animais , Bacillus thuringiensis/genética , Sobrevivência Celular , Besouros/genética , Endotoxinas/toxicidade , Resistência a Inseticidas , Larva/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Regulação para Cima , Zea mays/genética
2.
J Econ Entomol ; 114(5): 2096-2107, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34323975

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a significant pest of field corn, Zea mays L. (Poales: Poaceae), across the United States Corn Belt. Widespread adoption and continuous use of corn hybrids expressing the Cry3Bb1 protein to manage the western corn rootworm has resulted in greater than expected injury to Cry3Bb1-expressing hybrids in multiple areas of Nebraska. Single-plant bioassays were conducted on larval western corn rootworm populations to determine the level of resistance present in various Nebraska counties. The results confirmed a mosaic of susceptibility to Cry3Bb1 across Nebraska. Larval development metrics, including head capsule width and fresh weight, were measured to quantify the relationship between the level of resistance to Cry3Bb1 and larval developmental rate. Regression and correlation analyses indicate a significant positive relationship between Cry3Bb1 corrected survival and both larval development metrics. Results indicate that as the level of resistance to Cry3Bb1 within field populations increases, mean head capsule width and larval fresh weight also increase. This increases our understanding of western corn rootworm population dynamics and age structure variability present in the transgenic landscape that is part of the complex interaction of factors that drives resistance evolution. This collective variability and complexity within the landscape reinforces the importance of making corn rootworm management decisions based on information collected at the local level.

3.
Sci Rep ; 10(1): 746, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937872

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
J Econ Entomol ; 112(4): 1875-1886, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31114868

RESUMO

Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Proteínas de Bactérias , Endotoxinas , Resistência a Inseticidas , Larva , América do Norte , North Dakota , Plantas Geneticamente Modificadas , Zea mays
5.
Sci Rep ; 9(1): 3709, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842452

RESUMO

The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is a major pest of maize (Zea mays L.). This pest has developed resistance to insecticides and adapted to crop rotation and may already be in the early stages of adaptation to toxins produced by Bacillus thuringiensis (Bt). Toxicity bioassays using artificial diet have proven to be valuable for monitoring resistance in many species, but no artificial diet has been developed specifically for NCR larvae. Toward this end, we first evaluated known Diabrotica diets to identify a starting media. We then developed a specialized diet for NCR using an iterative approach. Screening designs including 8 diet components were performed to identify the principal nutritional components contributing to multiple developmental parameters (survival, weight, and molting). We then applied mixture designs coupled with response surface modeling to optimize a blend of those components. Finally, we validated an improved NCR diet formulation that supports approximately 97% survival and molting, and a 150% increase in larval weight after 10 days of feeding compared with the best previously published artificial diet. This formulation appears suitable for use in diet bioassays as a tool for evaluating the resistance of NCR populations to insecticides.


Assuntos
Besouros/fisiologia , Dieta/métodos , Alimentos Formulados/parasitologia , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias , Besouros/metabolismo , Endotoxinas , Inseticidas , Larva/fisiologia , Raízes de Plantas , Plantas Geneticamente Modificadas , Zea mays/genética
6.
J Econ Entomol ; 112(2): 842-851, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30668732

RESUMO

The susceptibility of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae to nine insecticides from five different classes and to Bt proteins eCry3.1Ab and mCry3A in the presence or absence of feeding stimulants, was estimated in filter paper and diet toxicity assays, respectively. The use of a synthetic feeding stimulant blend of the sugars glucose, sucrose, and fructose plus linoleic acid at a ratio of 30:4:4:0.3 mg/ml of distilled water was evaluated to determine whether they increase the efficacy of insecticides and Bt proteins. The efficacy of thiamethoxam diluted in solutions with feeding stimulants was significantly increased when compared to thiamethoxam dilutions in water (>60-fold). Differences in the efficacy of the other insecticide classes when diluted in feeding stimulant solutions were no greater than fivefold when compared to the insecticides diluted in water. The presence of corn root juice as a natural feeding stimulant diminished toxicity of the insecticides, except for thiamethoxam, even though larval fresh weight was higher when fed on root juice compared to feeding stimulant or water. The use of feeding stimulants in diet toxicity assays did not enhance efficacy of eCry3.1Ab nor mCry3A proteins. Feeding stimulants can be recommended in combination with thiamethoxam to increase larval mortality. These results are discussed in terms of applicability of feeding stimulants to improve susceptibility of western corn rootworm larvae to pesticides in general.


Assuntos
Besouros , Inseticidas , Animais , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Recém-Nascido , Larva , Plantas Geneticamente Modificadas , Zea mays
7.
PLoS One ; 13(11): e0208266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496268

RESUMO

Repeated use of field corn (Zea mays L.) hybrids expressing the Cry3Bb1 and mCry3A traits in Nebraska has selected for field-evolved resistance in some western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations. Therefore, this study was conducted to characterize spatial variation in local WCR susceptibility to Cry3Bb1 and mCry3A traits in Keith and Buffalo counties, Nebraska, and determine the relationship between past management practices and current WCR susceptibility. Adult WCR populations were collected from sampling grids during 2015 and 2016 and single-plant larval bioassays conducted with F1 progeny documented significant variation in WCR susceptibility to Cry3Bb1 and mCry3A on different spatial scales in both sampling grids. At the local level, results revealed that neighboring cornfields may support WCR populations with very different susceptibility levels, indicating that gene flow of resistant alleles from high trait survival sites is not inundating large areas. A field history index, comprised of additive and weighted variables including past WCR management tactics and agronomic practices, was developed to quantify relative selection pressure in individual fields. The field history index-Cry3 trait survivorship relationship from year 1 data was highly predictive of year 2 Cry3 trait survivorship when year 2 field history indices were inserted into the year 1 base model. Sensitivity analyses indicated years of trait use and associated selection pressure at the local level were the key drivers of WCR susceptibility to Cry3 traits in this system. Retrospective case histories from this study will inform development of optimal resistance management programs and increase understanding of plant-insect interactions that may occur when transgenic corn is deployed in the landscape. Results from this study also support current recommendations to slow or mitigate the evolution of resistance by using a multi-tactic approach to manage WCR densities in individual fields within an integrated pest management framework.


Assuntos
Proteínas de Bactérias/genética , Besouros/fisiologia , Endotoxinas/genética , Proteínas Hemolisinas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Suscetibilidade a Doenças , Nebraska , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/parasitologia , Zea mays/parasitologia
8.
J Econ Entomol ; 111(6): 2727-2733, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30189100

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is considered the most important maize (Zea mays L.) pest in the U.S. Corn Belt. Bioassays testing susceptibility to Bacillus thuringiensis Berliner (Bt) and other toxins of corn rootworm larvae often rely on artificial diet formulations. Successful bioassays on artificial diet for corn rootworm have sometimes been challenging because of microbial contamination. Toward the long-term goal of developing a universal artificial diet for western corn rootworm larvae, we compared larval survival, dry weight, and percentage of molt in 10-d bioassays from six current diets of which we were aware. In addition, as part of longer term rearing efforts, we recorded molting over an extended period of development (60 d). Six different artificial diets, including four proprietary industry diets (A, B, C, and D), the first published artificial diet for western corn rootworm (Pleau), and a new diet (WCRMO-1) were evaluated. Western corn rootworm larval survival was above 90% and contamination was 0% on all diets for 10 d. Diet D resulted in the greatest dry weight and percentage molting when compared with the other diets. Although fourth-instar western corn rootworm larvae have not been documented previously (only three instars have been previously documented), as many as 10% of the larvae from Diet B molted into a fourth instar prior to pupating. Overall, significant differences were found among artificial diets currently used to screen western corn rootworm. In order for data from differing toxins to be compared, a single, reliable and high-quality western corn rootworm artificial diet should eventually be chosen by industry, academia, and the public as a standard for bioassays.


Assuntos
Besouros/crescimento & desenvolvimento , Técnicas de Cultura , Dieta , Animais , Larva/crescimento & desenvolvimento
9.
Sci Rep ; 8(1): 14370, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232382

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 8(1): 5379, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599427

RESUMO

Insect resistance to transgenic crops is a growing concern for farmers, regulatory agencies, the seed industry, and researchers. Since 2009, instances of field-evolved Bt resistance or cross resistance have been documented for each of the four Bt proteins available for western corn rootworm (WCR), a major insect pest. To characterize resistance, WCR populations causing unexpected damage to Bt maize are evaluated in plant and/or diet toxicity assays. Currently, it is not possible to make direct comparisons of data from different Bt proteins due to differing proprietary artificial diets. Our group has developed a new, publicly available diet (WCRMO-1) with improved nutrition for WCR larvae. For the current manuscript, we tested the compatibility of all Bt proteins currently marketed for WCR on the WCRMO-1 diet and specific proprietary diets corresponding to each toxin using a susceptible colony of WCR. We also tested WCR colonies selected for resistance to each protein to assess the ability of the diet toxicity assay to detect Bt resistance. The WCRMO-1 diet is compatible with each of the proteins and can differentiate resistant colonies from susceptible colonies for each protein. Our diet allows researchers to monitor resistance without the confounding nutritional differences present between diets.


Assuntos
Besouros/efeitos dos fármacos , Endotoxinas/farmacologia , Animais , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Produtos Agrícolas , Dieta , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/metabolismo , Raízes de Plantas/parasitologia , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
11.
J Econ Entomol ; 111(1): 348-360, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186516

RESUMO

Northern, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), and western, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), corn rootworms are economic pests of corn, Zea mays L. in North America. We measured the impacts of corn hybrids incorporated with Cry3Bb1, Cry34/35Ab1, and pyramided (Cry3Bb1 + Cry34/35Ab1) Bacillus thuringiensis Berliner (Bt) proteins, tefluthrin soil insecticide, and clothianidin insecticidal seed treatment on beetle emergence, larval feeding injury, and corn yield at five locations from 2013 to 2015 in eastern North Dakota. In most cases, emergence was significantly lower in Bt-protected corn than in non-Bt corn hybrids. Exceptions included Wyndmere, ND (2013), where D. barberi emergence from Cry34/35Ab1 plots was not different from that in the non-Bt hybrid, and Arthur, ND (2013), where D. v. virgifera emergence from Cry3Bb1 plots did not differ from that in the non-Bt hybrid. Bt hybrids generally produced increased grain yield compared with non-Bt corn where rootworm densities were high, and larval root-feeding injury was consistently lower in Bt-protected plots than in non-Bt corn. The lowest overall feeding injury and emergence levels occurred in plots planted with the Cry3Bb1 + Cry34/35Ab1 hybrid. Time to 50% cumulative emergence of both species was 5-7 d later in Bt-protected than in non-Bt hybrids. Tefluthrin and clothianidin were mostly inconsequential in relation to beetle emergence and larval root injury. Our findings could suggest that some North Dakota populations could be in early stages of increased tolerance to some Bt toxins; however, Bt corn hybrids currently provide effective protection against rootworm injury in eastern North Dakota.


Assuntos
Besouros/fisiologia , Ciclopropanos/farmacologia , Herbivoria , Hidrocarbonetos Fluorados/farmacologia , Inseticidas/farmacologia , Zea mays/fisiologia , Animais , Bacillus thuringiensis/química , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , North Dakota , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Solo/química , Zea mays/genética , Zea mays/crescimento & desenvolvimento
12.
J Econ Entomol ; 109(4): 1872-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27329619

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States, and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 corn and mCry3A corn were found in Iowa and elsewhere. To date, western corn rootworm populations have remained susceptible to corn producing Bt toxin Cry34/35Ab1. In this study, we used single-plant bioassays to test field populations of western corn rootworm for resistance to Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Bioassays included nine rootworm populations collected from fields where severe injury to Bt corn had been observed and six control populations that had never been exposed to Bt corn. We found incomplete resistance to Cry34/35Ab1 corn among field populations collected from fields where severe injury to corn producing Cry34/35Ab1, either singly or as a pyramid, had been observed. Additionally, resistance to Cry3Bb1 corn and mCry3A corn was found among the majority of populations tested. These first cases of resistance to Cry34/35Ab1 corn, and the presence of resistance to multiple Bt toxins by western corn rootworm, highlight the potential vulnerability of Bt corn to the evolution of resistance by western corn rootworm. The use of more diversified management practices, in addition to insect resistance management, likely will be essential to sustain the viability of Bt corn for management of western corn rootworm.


Assuntos
Proteínas de Bactérias/farmacologia , Besouros/efeitos dos fármacos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Plantas Geneticamente Modificadas/fisiologia , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Besouros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética
13.
J Econ Entomol ; 109(3): 1399-1409, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122498

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of corn and is managed with corn that produces insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Beginning in 2009, resistance to Cry3Bb1 corn, and severe injury to Cry3Bb1 corn in the field, was observed in Iowa. However, few data exist on how Cry3Bb1-resistant western corn rootworm interact with various management practices in the field. Using a field experiment, we measured adult emergence and feeding injury to corn roots for both Cry3Bb1-resistant and Cry3Bb1-susceptible populations of western corn rootworm when tested against various Bt corn hybrids and a soil-applied insecticide. Between 2012 and 2013, we evaluated five fields that were associated with greater than one node of feeding injury to Cry3Bb1 corn by western corn rootworm (i.e., problem-field populations), and a laboratory strain that had never been exposed to Bt corn (i.e., control population). Adult emergence for western corn rootworm and root injury to corn were significantly higher in problem-field populations than control populations for both Cry3Bb1 corn and mCry3A corn. By contrast, corn with Cry34/35Ab1, either alone or pyramided with Cry3Bb1, significantly reduced adult emergence and root injury in both problem fields and control fields. In problem fields, application of the soil-applied insecticide to Cry3Bb1 corn significantly reduced root injury, but not adult emergence. Our results are discussed in terms of developing strategies for managing western corn rootworm with resistance to Cry3Bb1 and mCry3A, and delaying the additional evolution of Bt resistance by this pest.

14.
PLoS One ; 10(11): e0142299, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566127

RESUMO

Pyrethroid insecticides have been used to control larvae or adults of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a key pest of field corn in the United States. In response to reports of reduced efficacy of pyrethroids in WCR management programs in southwestern areas of Nebraska and Kansas the present research was designed to establish a baseline of susceptibility to the pyrethroid insecticide, bifenthrin, using susceptible laboratory populations and to compare this baseline with susceptibility of field populations. Concentration-response bioassays were performed to estimate the baseline susceptibility. From the baseline data, a diagnostic concentration (LC99) was determined and used to test adults of both laboratory and field populations. Larval susceptibility was also tested using both laboratory and field populations. Significant differences were recorded in adult and larval susceptibility among WCR field and laboratory populations. The highest LC50 for WCR adults was observed in populations from Keith 2 and Chase Counties, NE, with LC50s of 2.2 and 1.38 µg/vial, respectively, and Finney County 1, KS, with 1.43 µg/vial, as compared to a laboratory non-diapause population (0.24 µg/vial). For larvae, significant differences between WCR field and laboratory populations were also recorded. Significant differences in mortalities at the diagnostic bifenthrin concentration (LC99) were observed among WCR adult populations with western Corn Belt populations exhibiting lower susceptibility to bifenthrin, especially in southwestern Nebraska and southwestern Kansas. This study provides evidence that resistance to bifenthrin is evolving in field populations that have been exposed for multiple years to pyrethroid insecticides. Implications to sustainable rootworm management are discussed.


Assuntos
Besouros/efeitos dos fármacos , Inseticidas/toxicidade , Piretrinas/toxicidade , Zea mays/parasitologia , Animais , Besouros/fisiologia , Resistência a Inseticidas , Kansas , Larva/efeitos dos fármacos , Larva/fisiologia , Nebraska
15.
Plant Physiol ; 169(4): 2884-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26430225

RESUMO

Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.


Assuntos
Aprendizagem da Esquiva/fisiologia , Besouros/fisiologia , Herbivoria/fisiologia , Folhas de Planta/parasitologia , Raízes de Plantas/parasitologia , Spodoptera/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Ecossistema , Comportamento Alimentar/fisiologia , Genótipo , Interações Hospedeiro-Parasita , Larva/fisiologia , Espectrometria de Massas/métodos , Mutação , Fenóis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zea mays/parasitologia
16.
J Econ Entomol ; 108(2): 742-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470186

RESUMO

Transgenic plants have been widely adopted by growers to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in field corn. Because of reduced efficacy in some Nebraska fields after repeated use of Cry3Bb1-expressing hybrids, single plant bioassays were conducted in 2012 and 2013 to characterize the susceptibility of western corn rootworm populations to the rootworm-active proteins Cry3Bb1, mCry3A, and Cry34/35Ab1. Results demonstrate that there are heritable differences in susceptibility of Nebraska western corn rootworm populations to rootworm-active Bt traits. Proportional survival and corrected survival data coupled with field histories collectively support the conclusion that a level of field resistance to Cry3Bb1 has evolved in some Nebraska populations in response to selection pressure and that cross-resistance exists between Cry3Bb1 and mCry3A. There was no apparent cross-resistance between Cry34/35Ab1 and either Cry3Bb1 or mCry3A. The potential implications of these results on current and future corn rootworm management strategies are discussed.


Assuntos
Proteínas de Bactérias , Besouros , Endotoxinas , Proteínas Hemolisinas , Inseticidas , Animais , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Larva , Nebraska , Plantas Geneticamente Modificadas , Zea mays/genética
17.
J Econ Entomol ; 107(1): 352-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665720

RESUMO

Fitness costs can delay pest resistance to crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt), and past research has found that entomopathogens impose fitness costs of Bt resistance. In addition, entomopathogens can be used for integrated pest management by providing biological control of pests. The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize and is currently managed by planting of Bt maize. We tested whether entomopathogenic nematodes and fungi increased mortality of western corn rootworm and whether these entomopathogens increased fitness costs of resistance to Cry3Bb1 maize. We exposed western corn rootworm larvae to two species of nematodes, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and Steinernemafeltiae Filipjev (Rhabditida: Steinernematidae), and to two species of fungi, Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) (strain GHA) and Metarhizium brunneum (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) (strain F52) in two assay types, namely, seedling mat and small cup. Larval mortality increased with the concentration of H. bacteriophora and S. feltiae in the small cup assay, and with the exception of S. feltiae and B. bassiana in the seedling mat assay, mortality from entomopathogens was significantly greater than zero for the remaining entomopathogens in both assays. However, no fitness costs were observed in either assay type for any entomopathogen. Increased mortality of western corn rootworm larvae caused by these entomopathogens supports their potential use in biological control; however, the lack of fitness costs suggests that entomopathogens will not delay the evolution of Bt resistance in western corn rootworm.


Assuntos
Beauveria , Besouros , Endotoxinas , Metarhizium , Controle Biológico de Vetores , Rabditídios , Animais , Feminino , Resistência a Inseticidas , Masculino , Plantas Geneticamente Modificadas , Zea mays
18.
Gene ; 534(2): 362-70, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24498652

RESUMO

The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gag-pol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~8821). BEL element copy number was correlated among different D. v. virgifera populations (R2=0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera.


Assuntos
Besouros/genética , Genoma de Inseto , Sequência de Aminoácidos , Animais , Cromossomos Artificiais Bacterianos , Variações do Número de Cópias de DNA , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Retroelementos , Alinhamento de Sequência , Sequências Repetidas Terminais , Transcrição Genética
19.
J Biomed Biotechnol ; 2012: 604076, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919272

RESUMO

Feeding damage caused by the western corn rootworm, Diabrotica virgifera virgifera, is destructive to corn plants in North America and Europe where control remains challenging due to evolution of resistance to chemical and transgenic toxins. A BAC library, DvvBAC1, containing 109,486 clones with 104 ± 34.5 kb inserts was created, which has an ~4.56X genome coverage based upon a 2.58 Gb (2.80 pg) flow cytometry-estimated haploid genome size. Paired end sequencing of 1037 BAC inserts produced 1.17 Mb of data (~0.05% genome coverage) and indicated ~9.4 and 16.0% of reads encode, respectively, endogenous genes and transposable elements (TEs). Sequencing genes within BAC full inserts demonstrated that TE densities are high within intergenic and intron regions and contribute to the increased gene size. Comparison of homologous genome regions cloned within different BAC clones indicated that TE movement may cause haplotype variation within the inbred strain. The data presented here indicate that the D. virgifera virgifera genome is large in size and contains a high proportion of repetitive sequence. These BAC sequencing methods that are applicable for characterization of genomes prior to sequencing may likely be valuable resources for genome annotation as well as scaffolding.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Besouros/genética , Genes de Insetos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos , Animais , Elementos de DNA Transponíveis/genética , Eletroforese em Gel de Ágar , Citometria de Fluxo , Biblioteca Gênica , Tamanho do Genoma , Genômica , Haplótipos/genética , Anotação de Sequência Molecular
20.
J Econ Entomol ; 105(4): 1407-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928323

RESUMO

We examined inheritance of resistance, feeding behavior, and fitness costs for a laboratory-selected strain of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), with resistance to maize (Zea maize L.) producing the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1. The resistant strain developed faster and had increased survival on Bt maize relative to a susceptible strain. Results from reciprocal crosses of the resistant and susceptible strains indicated that inheritance of resistance was nonrecessive. No fitness costs were associated with resistance alleles in the presence of two entomopathogenic nematode species, Steinernema carpocapsae Weiser and Heterorhabditis bacteriophora Poinar. Larval feeding studies indicated that the susceptible and resistant strains did not differ in preference for Bt and non-Bt root tissue in choice assays.


Assuntos
Adaptação Biológica , Proteínas de Bactérias , Besouros/genética , Endotoxinas , Preferências Alimentares , Proteínas Hemolisinas , Rabditídios , Animais , Toxinas de Bacillus thuringiensis , Feminino , Resistência a Inseticidas/genética , Larva , Masculino , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...