Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598843

RESUMO

Selective photocatalytic transformations of chemicals derived from biomass, such as isobutanol, have been long envisioned for a sustainable chemical production. A strong temperature dependence in the reaction selectivity is found for isobutanol photo-oxidation on rutile TiO2(110). The strong temperature dependence is attributed to competition between thermal desorption of the primary photoproduct and secondary photochemical steps. The aldehyde, isobutanal, is the primary photoproduct of isobutanol. At room temperature, isobutanal is obtained selectively from photo-oxidation because of rapid thermal desorption. In contrast, secondary photo-oxidation of isobutanal to propane dominates at lower temperature (240 K) due to the persistence of isobutanal on the surface after it is formed. The byproduct of isobutanal photo-oxidation is CO, which is evolved at higher temperature as a consequence of thermal decomposition of an intermediate, such as formate. The photo-oxidation to isobutanal proceeds after thermally induced isobutoxy formation. These results have strong implications for controlling the selectivity of photochemical processes more generally, in that, selectivity is governed by competition of desorption vs secondary photoreaction of products. This competition can be exploited to design photocatalytic processes to favor specific chemical transformations of organic molecules.

2.
Phys Chem Chem Phys ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393945

RESUMO

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We have developed a method, based on the artificial neural network, trained on ab initio site-specific XANES calculations, that enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic nanoalloys. By validating the neural network-yielded metal-metal coordination numbers based on the XANES analysis by previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at% Pd in Au) PdAu nanoparticles, driven by their gas and temperature treatments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32259381

RESUMO

Controlling the selectivity of catalytic reactions is a critical aspect of improving energy efficiency in the chemical industry; thus, predictive models are of key importance. Herein the performance of a heterogeneous, nanoporous Au catalyst is predicted for the complex catalytic self-coupling of the series of C2 -C4 alkyl alcohols, based solely on the known kinetics of the elementary steps of the catalytic cycle for methanol coupling, using scaling methods augmented by density functional theory. Notably, a sharp decrease in selectivity for ester formation with increasing molecular weight to favor the aldehyde due to van der Waals interactions of reaction intermediates with the surface was predicted and subsequently verified quantitatively by experiment. Further, the agreement between theory and experiment clearly demonstrates the efficacy of this approach for building a predictive model of catalytic behavior for a homologous set of reactants using a small set of experimental information.

4.
Phys Chem Chem Phys ; 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129370

RESUMO

We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.30 ML (monolayer) and continue to develop until aggregating and forming a nearly conformal Pd bi-layer at a coverage near 2 ML. Analysis of the STM images provides quantitative evidence of a transition from single to bi-layer Pd growth on the AgOx layer, and a continuation of bi-layer growth with increasing Pd coverage from ∼0.3 to 2 ML. XPS further demonstrates that the AgOx layer efficiently transfers oxygen to Pd at 300 K, and that the fraction of Pd that oxidizes is approximately equal to the local oxygen coverage in the AgOx layer for Pd coverages up to at least ∼0.7 ML. Our results show that oxygen in the initial AgOx layer mediates the growth and structural properties of Pd on the AgOx/Ag(111) surface, enabling the preparation of model PdAg surfaces with uniformly distributed single or bi-layer Pd clusters. Facile auto-oxidation of Pd by AgOx further suggests that oxygen transfer from Ag to Pd could play a role in promoting oxidation chemistry of adsorbed molecules on PdAg surfaces.

5.
Nano Lett ; 19(1): 520-529, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30501196

RESUMO

Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.

6.
J Am Chem Soc ; 140(38): 12210-12215, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30176212

RESUMO

The nonuniform reactivity of adsorbed oxygen during the selective oxidation of methanol on Au(110)-(1×2) was demonstrated using in situ scanning tunneling microscopy (STM), establishing the importance of both atomic and mesoscale structure in determining reaction kinetics. At coverages above 0.06 ML, oxygen consumption occurs preferentially along [11̅0] direction, creating local regions completely devoid of oxygen between oxygen islands. The directionally specific reactivity is attributed to a combination of the weaker binding of oxygen atoms at chain termini and the release of surface strain induced by O bonding to Au. The generality of this phenomenon is illustrated by analogous, but kinetically contrasting behavior, for reaction of 2-propanol with oxygen covered Au(110)-(1×2). Even at low O coverages, there are structurally related changes in the reactivity for the reaction with methanol. With decreasing O coverage, a slow reaction period is followed by a fast reaction period, the latter starting when oxygen coverage decreases to ∼0.06 monolayer, independent of the initial coverage. This increase in reactivity is attributed to a sudden destabilization of the island structure. These results demonstrate that both local and mesocale structures can affect reactivity.

7.
Sci Adv ; 4(8): eaas9459, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30182056

RESUMO

Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying. The material exhibits three distinct structural length scales ranging from the digitally controlled macroporous network structure (10 to 1000 µm) to the nanoscale pore/ligament morphology (30 to 500 nm) controlled by dealloying. Supercapacitance, pressure drop, and catalysis measurements reveal that the 3D hierarchical nature of our printed nanoporous metals markedly improves mass transport and reaction rates for both liquids and gases. Our approach can be applied to a variety of alloy systems and has the potential to revolutionize the design of (electro-)chemical plants by changing the scaling relations between volume and catalyst surface area.

8.
Faraday Discuss ; 208(0): 595-607, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30116826

RESUMO

An overview of the Faraday Discussion, "Designing Nanoparticle Systems for Catalysis", is presented. Examples are taken from the papers presented at the meeting and from the literature to illustrate the main discussion points.

9.
Chem Sci ; 9(15): 3759-3766, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780508

RESUMO

The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis. The binding efficacy of carboxylates is only weakly dependent on alkyl chain length for relatively short-chain molecules, as demonstrated using quantitative temperature-programmed reaction spectroscopy. Corresponding density functional theory (DFT) calculations demonstrated that the bidentate anchoring geometry is rigid and restricts the amount of additional stabilization through adsorbate-surface van der Waals (vdW) interactions which control stability for alkoxides. A combination of scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) shows that carboxylates form dense local islands on Au(110). Complementary DFT calculations demonstrate that adsorbate-adsorbate interactions provide additional stabilization that increases as a function of alkyl chain length for C2 and C3 carboxylates. Hence, overall stability is generally a function of the anchoring group to the surface and the inter-adsorbate interaction. This study demonstrates the importance of these two important factors in describing binding of key catalytic intermediates.

10.
Phys Chem Chem Phys ; 20(4): 2196-2204, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29234757

RESUMO

The water-oxygen-gold interface is important in many surface processes and has potential influence on heterogeneous catalysis. Herein, it is shown that water facilitates the migration of atomic oxygen on Au(110), demonstrating the dynamic nature of surface adsorption. We demonstrate this effect for the first time, using in situ scanning tunnelling microscopy (STM), temperature-programmed reaction spectroscopy (TPRS) and first-principles theoretical calculations. The dynamic interaction of water with adsorbed O maintains a high dispersion of O on the surface, potentially creating reactive transient species. At low temperature and pressure, isotopic experiments show that adsorbed oxygen on the Au(110) surface exchanges with oxygen in H218O. The presence of water modulates local electronic properties and facilitates oxygen exchange. Combining experimental results and theory, we propose that hydroxyl is transiently formed via proton transfer from the water to adsorbed oxygen. Hydroxyl groups easily recombine to regenerate water and adsorbed oxygen atoms, the net result of which is migration of the adsorbed oxygen without significant change in its overall distribution on the surface. The presence of water creates a dynamic surface where mobile surface oxygen atoms and hydroxyls are present, which can lead to a better performance of gold catalysis in oxidation reactions.

11.
J Phys Chem B ; 122(2): 555-560, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28722410

RESUMO

The critical role of noncovalent van der Waals (vdW) interactions in determining the relative thermodynamic stability of alkoxy intermediates has been demonstrated for the Cu(110) surface using a combination of experiment and theory. The results may be significant for the selectivity control of copper-based reactions of alcohols. Previous examination of this effect on Au(110) was also extended to include higher molecular weight alcohols; on Cu(110) and Au(110) the hierarchy for the strength of binding of the alkoxys was found to be the same within experimental accuracy, with alkoxy species of greater chain length being more stable. The equilibrium constants governing the competition of alcohol pairs for binding sites of the alkoxys are also similar on the two surfaces. These results reveal the generality of such vdW effects. This work expands the understanding of the role of vdW interactions on the binding efficacy of key reactive intermediates on metal surfaces, a key factor in the rational design of complex and selective catalytic processes.

12.
J Phys Chem B ; 122(2): 548-554, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28749680

RESUMO

Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.

13.
Chem Rev ; 118(5): 2816-2862, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29116787

RESUMO

The activation of O2 on metal surfaces is a critical process for heterogeneous catalysis and materials oxidation. Fundamental studies of well-defined metal surfaces using a variety of techniques have given crucial insight into the mechanisms, energetics, and dynamics of O2 adsorption and dissociation. Here, trends in the activation of O2 on transition metal surfaces are discussed, and various O2 adsorption states are described in terms of both electronic structure and geometry. The mechanism and dynamics of O2 dissociation are also reviewed, including the importance of the spin transition. The reactivity of O2 and O toward reactant molecules is also briefly discussed in the context of catalysis. The reactivity of a surface toward O2 generally correlates with the adsorption strength of O, the tendency to oxidize, and the heat of formation of the oxide. Periodic trends can be rationalized in terms of attractive and repulsive interactions with the d-band, such that inert metals tend to feature a full d band that is low energy and has a large spatial overlap with adsorbate states. More open surfaces or undercoordinated defect sites can be much more reactive than close-packed surfaces. Reactions between O and other species tend to be more prevalent than reactions between O2 and other species, particularly on more reactive surfaces.

14.
Chemistry ; 24(8): 1833-1837, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28960528

RESUMO

A highly modular synthesis of designed catalysts with controlled bimetallic nanoparticle size and composition and a well-defined structural hierarchy is demonstrated. Exemplary catalysts-bimetallic dilute Ag-in-Au nanoparticles partially embedded in a porous SiO2 matrix (SiO2 -Agx Auy )-were synthesized by the decoration of polymeric colloids with the bimetallic nanoparticles followed by assembly into a colloidal crystal backfilled with the matrix precursor and subsequent removal of the polymeric template. This work reports that these new catalyst architectures are significantly better than nanoporous dilute AgAu alloy catalysts (nanoporous Ag3 Au97 ) while retaining a clear predictive relationship between their surface reactivity with that of single-crystal Au surfaces. This paves the way for broadening the range of new catalyst architectures required for translating the designed principles developed under controlled conditions to designed catalysts under operating conditions for highly selective coupling of alcohols to form esters. Excellent catalytic performance of the porous SiO2 -Agx Auy structure for selective oxidation of both methanol and ethanol to produce esters with high conversion efficiency, selectivity, and stability was demonstrated, illustrating the ability to translate design principles developed for support-free materials to the colloid-templated structures. The synthetic methodology reported is customizable for the design of a wide range of robust catalytic systems inspired by design principles derived from model studies. Fine control over the composition, morphology, size, distribution, and availability of the supported nanoparticles was demonstrated.

15.
Acc Chem Res ; 50(3): 517-521, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28945397

RESUMO

Developing active, selective, and energy efficient heterogeneous catalytic processes is key to a sustainable future because heterogeneous catalysis is at the center of the chemicals and energy industries. The design, testing, and implementation of robust and selective heterogeneous catalytic processes based on insights from fundamental studies could have a tremendous positive impact on the world.

16.
ACS Appl Mater Interfaces ; 9(30): 25615-25622, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28693326

RESUMO

Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. In this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn-Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal that the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn-Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H3PO4. Anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.

17.
Nat Mater ; 16(5): 558-564, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992418

RESUMO

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.

18.
J Am Chem Soc ; 138(46): 15243-15250, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27775885

RESUMO

Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

19.
Phys Chem Chem Phys ; 18(38): 26844-26853, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722678

RESUMO

One of the most critical factors in oxidation catalysis is controlling the state of oxygen on the surface. Au and Ag are both effective selective oxidation catalysts for various reactions, and their interactions with oxygen are critical for determining their catalytic performance. Here, we show that the state of oxygen on a catalytic surface can be controlled by alloying Au and Ag. Using temperature programmed desorption, density functional theory (DFT), and Monte Carlo simulations, we examine how alloying Au into an Ag(110) surface affects O2 dissociation, O coverage, and O stability. DFT calculations indicate that Au resides in the second layer, in agreement with previous experimental findings. The minimum ensemble size for O2 dissociation is 2 Ag atoms in adjacent rows of the second layer. Surprisingly, adsorbed O2 and the dissociation transition state interact directly with metal atoms in the adjacent trough, such that Au in this position inhibits O2 dissociation by direct repulsion with oxygen electronic states. Using Monte Carlo simulations based on DFT energetics, we create models of the surface that agree closely with our experimental results. Both show that the O2 uptake decreases nearly linearly as the Au concentration increases, and no O2 uptake occurs for Au concentrations above 50%. For Au concentrations greater than 18%, increasing the Au concentration also decreases the stability of the adsorbed O. Based on these results, the O coverage and O stability can be tuned, in some cases independently. We also study how the reactivity of the surface is affected by these factors using CO2 oxidation as a simple test reaction.

20.
Nat Commun ; 7: 13139, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731407

RESUMO

Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au-Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA