Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(13): 15461-15467, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343673

RESUMO

Photo-switchable organic field-effect transistors (OFETs) represent an important platform for designing memory devices for a diverse array of products including security (brand-protection, copy-protection, keyless entry, etc.), credit cards, tickets, and multiple wearable organic electronics applications. Herein, we present a new concept by introducing self-assembled monolayers of donor-acceptor porphyrin-fullerene dyads as light-responsive triggers modulating the electrical characteristics of OFETs and thus pave the way to the development of advanced nonvolatile optical memory. The devices demonstrated wide memory windows, high programming speeds, and long retention times. Furthermore, we show a remarkable effect of the orientation of the fullerene-polymer dyads at the dielectric/semiconductor interface on the device behavior. In particular, the dyads anchored to the dielectric by the porphyrin part induced a reversible photoelectrical switching of OFETs, which is characteristic of flash memory elements. On the contrary, the devices utilizing the dyad anchored by the fullerene moiety demonstrated irreversible switching, thus operating as read-only memory (ROM). A mechanism explaining this behavior is proposed using theoretical DFT calculations. The results suggest the possibility of revisiting hundreds of known donor-acceptor dyads designed previously for artificial photosynthesis or other purposes as versatile optical triggers in advanced OFET-based multibit memory devices for emerging electronic applications.

2.
J Phys Chem Lett ; 13(12): 2744-2749, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35315674

RESUMO

Herein, we report the nanoscale visualization of the photochemical degradation dynamics of MAPbI3 (MA = CH3NH3+) using infrared scattering scanning near-field microscopy (IR s-SNOM) combined with a series of complementary analytical techniques such as UV-vis and FTIR-spectroscopy, XRD, and XPS. Light exposure of the MAPbI3 films resulted in a gradual loss of MA+ cations starting from the grain boundaries at the film surface and slowly progressing toward the center of the grains and deeper into the bulk perovskite phase. The binary lead iodide PbI2 was found to be the major perovskite photochemical degradation product under the experimental conditions used. Interestingly, the formation of the PbI2 skin over the perovskite grains resulted in a largely enhanced photoluminescence, which resembles the effects observed for core-shell quantum dots. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved degradation dynamics of perovskite absorbers and revealing the associated material aging pathways.

3.
J Phys Chem Lett ; 12(18): 4362-4367, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33938752

RESUMO

Regardless of the impressive photovoltaic performances demonstrated for lead halide perovskite solar cells, their practical implementation is severely impeded by the low device stability. Complex lead halides are sensitive to both light and heat, which are unavoidable under realistic solar cell operational conditions. Suppressing these intrinsic degradation pathways requires a thorough understanding of their mechanistic aspects. Herein, we explored the temperature effects in the light-induced decomposition of MAPbI3 and PbI2 thin films under anoxic conditions. The analysis of the aging kinetics revealed that MAPbI3 photolysis and PbI2 photolysis have quite high effective activation energies of ∼85 and ∼106 kJ mol-1, respectively, so decreasing the temperature from 55 to 30 °C can extend the perovskite lifetime by factors of >10-100. These findings suggest that controlling the temperature of the perovskite solar panels might allow the long operational lifetimes (>20 years) required for the practical implementation of this promising technology.

4.
Chem Commun (Camb) ; 56(64): 9162-9165, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32657295

RESUMO

Four novel halobismuthate(iii) complexes with alkyl viologen cations: (R2Viol)2[Bi2X10] (R = n-butyl, n-pentyl, X = Cl, Br) have been synthesized. Both chloride complexes revealed photochromic behavior and were successfully utilized for the fabrication of OFET-based memory devices with high switching coefficients and good write-read-erase cycling stability.

5.
J Phys Chem Lett ; 11(16): 6772-6778, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689804

RESUMO

Hybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI3 can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent. By applying a few complementary methods, we reveal that the PVC additive leads to passivation of defects in the absorber material. Introducing an optimal content of PVC into MAPbI3 delivers a PCE of 18.7% in combination with a significantly improved solar cell operational lifetime: devices retained ∼70% of the initial efficiency after light soaking for 1500 h, whereas the control samples without PVC degraded almost completely under the same conditions.

6.
J Phys Chem Lett ; 11(14): 5563-5568, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32564599

RESUMO

Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose ∼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.

7.
J Phys Chem Lett ; 11(7): 2630-2636, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32178515

RESUMO

In this work, we report a comparative study of the gamma ray stability of perovskite solar cells based on a series of perovskite absorbers including MAPbI3 (MA = methylammonium), MAPbBr3, Cs0.15FA0.85PbI3 (FA = formamidinim), Cs0.1MA0.15FA0.75PbI3, CsPbI3, and CsPbBr3. We reveal that the composition of the perovskite material strongly affects the radiation stability of the solar cells. In particular, solar cells based on the MAPbI3 were found to be the most resistant to gamma rays since this perovskite undergoes rapid self-healing due to the special gas-phase chemistry analyzed with ab initio calculations. The fact that the solar cells based on MAPbI3 can withstand a 1000 kRad gamma ray dose without any noticeable degradation of the photovoltaic properties is particularly exciting and shifts the paradigm of research in this field toward designing more dynamic rather than intrinsically robust (e.g., inorganic) materials.

8.
J Phys Chem Lett ; 11(1): 333-339, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838849

RESUMO

We report the first systematic assessment of intrinsic photothermal stability of a large panel of complex lead halides APbX3 incorporating different univalent cations (A = CH3NH3+, [NH2CHNH2]+, Cs+) and halogen anions (X = Br, I) using a series of analytical techniques such as UV-vis and X-ray photoelectron spectroscopy, X-ray diffraction, EDX analysis, atomic force and scanning electron microscopy, ESR spectroscopy, and mass spectrometry. We show that heat stress and light soaking induce a severe degradation of perovskite films even in the absence of oxygen and moisture. The stability of complex lead halides increases in the order MAPbBr3 < MAPbI3 < FAPbI3 < FAPbBr3 < CsPbI3 < CsPbBr3, thus featuring all-inorganic perovskites as the most promising absorbers for stable perovskite solar cells. An important correlation was found between the stability of the complex lead halides and the volatility of univalent cation halides incorporated in their structure. The established relationship provides useful guidelines for designing new complex metal halides with immensely improved stability.

9.
ACS Appl Mater Interfaces ; 9(39): 33478-33483, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28481102

RESUMO

We report reversible and irreversible strain effects and interfacial atomic mixing in MAPbI3/ITO under influence of external electric bias and photoillumination. Using conductive-probe atomic force microscopy, we locally applied a bias voltage between the MAPbI3/ITO and the conductive tip and observed local dynamic strain effects and current under conditions of forward bias. We found that the reversible part of the strain is associated with a current spike at the current onset stage and can therefore be related to an electrochemical process accompanied by local molar volume change. Similar partly reversible surface deformation was observed when the tip-sample contact was illuminated by light. Time-of-flight secondary ion mass spectrometry of electrically biased regions revealed massive atomic mixing at the buried MAPbI3/ITO interface, while the top MAPbI3 surface, subjected to strong morphological damage at the tip-surface contact, revealed less significant chemical decomposition.

10.
Chem Commun (Camb) ; 53(35): 4830-4833, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28418056

RESUMO

We report an unusual thermal condensation of readily available tetracyanocyclopropanes to tetracyanosubstituted triazaphenalenes, which revealed interesting optoelectronic properties such as strongly pronounced solvatochromism and bright photoluminescence. Optical memory elements and organic light emitting diodes with a deep red electroluminescence were designed using triazaphenalenes, thus highlighting the potential of these compounds as materials for electronic applications.

11.
J Phys Chem Lett ; 8(7): 1651-1656, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28322051

RESUMO

We present an all-inorganic photoactive material composed of Ag2PbI4 and PbI2, which shows unexpectedly good photovoltaic performance in planar junction solar cells delivering external quantum efficiencies of ∼60% and light power conversion efficiencies of ∼3.9%. The revealed characteristics are among the best reported to date for metal halides with nonperovskite crystal structure. Most importantly, the obtained results suggest a possibility of reaching high photovoltaic efficiencies for binary and, probably, also ternary blends of different inorganic semiconductor materials. This approach, resembling the bulk heterojunction concept guiding the development of organic photovoltaics for two decades, opens wide opportunities for rational design of novel inorganic and hybrid materials for efficient and sustainable photovoltaic technologies.

12.
J Phys Chem Lett ; 8(6): 1211-1218, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28220700

RESUMO

We report a careful and systematic study of thermal and photochemical degradation of a series of complex haloplumbates APbX3 (X = I, Br) with hybrid organic (A+ = CH3NH3) and inorganic (A+ = Cs+) cations under anoxic conditions (i.e., without exposure to oxygen and moisture by testing in an inert glovebox environment). We show that the most common hybrid materials (e.g., MAPbI3) are intrinsically unstable with respect to the heat- and light-induced stress and, therefore, can hardly sustain the real solar cell operation conditions. On the contrary, the cesium-based all-inorganic complex lead halides revealed far superior stability and, therefore, provide an impetus for creation of highly efficient and stable perovskite solar cells that can potentially achieve pragmatic operational benchmarks.

13.
J Phys Chem Lett ; 8(1): 67-72, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27936746

RESUMO

We report here all inorganic CsPbI3 planar junction perovskite solar cells fabricated by thermal coevaporation of CsI and PbI2 precursors. The best devices delivered power conversion efficiency (PCE) of 9.3 to 10.5%, thus coming close to the reference MAPbI3-based devices (PCE ≈ 12%). These results emphasize that all inorganic lead halide perovskites can successfully compete in terms of photovoltaic performance with the most widely used hybrid materials such as MAPbI3.

14.
J Phys Chem Lett ; 7(21): 4353-4357, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27758104

RESUMO

Here we report a systematic study of the Pb2+ substitution in the hybrid iodoplumbate MAPbI3 with a series of elements affecting optoelectronic, structural, and morphological properties of the system. It has been shown that even partial replacement of lead with Cd2+, Zn2+, Fe2+, Ni2+, Co2+, In3+, Bi3+, Sn4+, and Ti4+ results in a significant deterioration of the photovoltaic characteristics. On the contrary, Hg-containing hybrid MAPb1-xHgxI3 salts demonstrated a considerably improved solar cell performance at optimal mercury loading. This result opens up additional dimension in the compositional engineering of the complex lead halides for designing novel photoactive materials with advanced optoelectronic and photovoltaic properties.

15.
Chem Commun (Camb) ; 51(80): 14917-20, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26304999

RESUMO

In the present Communication we discuss a field-induced and photoinduced self-doping chemistry resulting in the formation of the positively and negatively charged vacancies in the MAPbI3 perovskite films. These vacancies induce p-type and n-type doping of the perovskite absorber leading to the realization of the p-i-n device operation mechanism.

16.
Chem Commun (Camb) ; 51(28): 6130-2, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25748821

RESUMO

Optical memory elements based on photoswitchable organic field-effect transistors have been designed by using an interfacial layer of photochromic spirooxazine molecules sandwiched between semiconductor and dielectric layers. Optical and electrical programming of the designed devices leads to multiple discrete states demonstrating drastically different electrical characteristics (VTH, IDS) and advanced stability.

17.
Chem Commun (Camb) ; 51(12): 2239-41, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25370184

RESUMO

Here we report the application of the Electron Spin Resonance (ESR) spectroscopy as a highly sensitive analytical technique for assessment of the electronic quality of organic semiconductor materials, particularly conjugated polymers. It has been shown that different batches of the same conjugated polymer might contain substantially different amounts of radical species which were attributed to structural defects and/or impurities behaving as traps for mobile charge carriers. Good correlations between the concentrations of radicals in various batches of conjugated polymers and their performances in organic solar cells have been revealed.

18.
Chem Commun (Camb) ; 51(12): 2242-4, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25435101

RESUMO

It was shown that ESR spectroscopy is a very useful technique for monitoring the photochemical and thermal degradation of conjugated polymers commonly used in organic solar cells. The relative stability of materials can be quantified by comparing the rates of trap accumulation (dC(R)/dt) estimated from their ESR profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...