Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 95(5): 607-614, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859550

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.

3.
Am J Hum Genet ; 103(5): 786-793, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343942

RESUMO

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

4.
Brain Sci ; 8(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087272

RESUMO

The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause a range of brain malformations. We describe four unrelated patients with the same de novo missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing. Detailed comparison revealed similar brain phenotypes with mild variability. Shared features included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation by computer-based protein structure modelling and heterologous expression in HEK-293 cells. The results suggest the mutation subtly impairs microtubule function, potentially by affecting inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors (such as genetic background or environmental conditions) to influence phenotypic outcome, thus explaining the mild variability in clinical manifestations.

6.
Eur J Med Genet ; 61(12): 744-754, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30016746

RESUMO

A large number of genes encoding for tubulin proteins are expressed in the developing brain. Each is subject to specific spatial and temporal expression patterns. However, most are highly expressed in post-mitotic neurons during stages of neuronal migration and differentiation. The major tubulin subclasses (alpha- and beta-tubulin) share high sequence and structural homology. These globular proteins form heterodimers and subsequently co-assemble into microtubules. Microtubules are dynamic, cytoskeletal polymers which play key roles in cellular processes crucial for cortical development, including neuronal proliferation, migration and cortical laminar organisation. Mutations in seven genes encoding alpha-tubulin (TUBA1A), beta-tubulin (TUBB2A, TUBB2B, TUBB3, TUBB4A, TUBB) and gamma-tubulin (TUBG1) isoforms have been associated with a wide and overlapping range of brain malformations or "Tubulinopathies". The majority of cortical phenotypes include lissencephaly, polymicrogyria, microlissencephaly and simplified gyration. Well-known hallmarks of the tubulinopathies include dysmorphism of the basal ganglia (fusion of the caudate nucleus and putamen with absence of the anterior limb of the internal capsule), midline commissural structures hypoplasia and/or agenesis (anterior commissure, corpus callosum and fornix), hypoplasia of the oculomotor and optic nerves, cerebellar hypoplasia or dysplasia and dysmorphism of the hind-brain structures. The cortical and extra-cortical brain phenotypes observed are largely dependent on the specific tubulin gene affected. In the present review, all the published data on tubulin family gene mutations and the associated cortical phenotypes are summarized. In addition, the most typical neuroimaging patterns of malformations of cortical development associated with tubulin gene mutations detected on the basis of our own experience are described.

7.
Epilepsy Res ; 140: 166-170, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367179

RESUMO

Bainbridge-Ropers syndrome is a genetic syndrome caused by heterozygous loss-of-function pathogenic variants in ASXL3, which encodes a protein involved in transcriptional regulation. Affected individuals have multiple abnormalities including developmental impairment, hypotonia and characteristic facial features. Seizures are reported in approximately a third of cases; however, the epileptology has not been thoroughly studied. We identified three patients with pathogenic ASXL3 variants and seizures at Austin Health and in the DECIPHER database. These three patients had novel de novo ASXL3 pathogenic variants, two with truncation variants and one with a splice site variant. All three had childhood-onset generalized epilepsy with generalized tonic-clonic seizures, with one also having atypical absence seizures. We also reviewed available clinical data on five published patients with Bainbridge-Ropers syndrome and seizures. Of the five previously published patients, three also had generalized tonic-clonic seizures, one of whom also had possible absence seizures; a fourth patient had absence seizures and possible focal seizures. EEG typically showed features consistent with generalized epilepsy including generalized spike-wave, photoparoxysmal response, and occipital intermittent rhythmic epileptiform activity. Bainbridge-Ropers syndrome is associated with childhood-onset generalized epilepsy with generalized tonic-clonic seizures and/or atypical absence seizures.

8.
Brain ; 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29365063

RESUMO

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.

9.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Sequenciamento Completo do Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
10.
Am J Hum Genet ; 101(5): 664-685, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100083

RESUMO

Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Mutação/genética , Criança , Pré-Escolar , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Deficiência Intelectual/genética , Masculino , Recidiva , Convulsões/genética
11.
BMC Med Genet ; 17(1): 34, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113213

RESUMO

BACKGROUND: Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. METHODS: We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. RESULTS: 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. CONCLUSIONS: We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia/genética , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Deleção de Sequência , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , País de Gales , Adulto Jovem
12.
Eur J Hum Genet ; 23(3): 292-301, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25052316

RESUMO

Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode ß- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Actinas/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Facies , Feminino , Ordem dos Genes , Loci Gênicos , Humanos , Masculino , Mutação , Fenótipo , Adulto Jovem
13.
Am J Med Genet C Semin Med Genet ; 166C(2): 198-210, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24862549

RESUMO

Lissencephaly is a spectrum of severe brain malformations caused by the failure of migrating neurons to reach optimal positions in the developing cerebral cortex. Several syndromes associated with lissencephaly have been characterized in recent years. Identification of the genetic basis of these disorders has brought fascinating insights into the mechanisms of brain development, as well as benefits to patients through improved molecular diagnosis and genetic counseling. This review explores the clinical presentation, radiological features, histological findings and molecular basis of lissencephaly with the aim of facilitating the selection and interpretation of gene tests in patients with 'smooth brain' phenotypes.


Assuntos
Lisencefalia/genética , Animais , Heterogeneidade Genética , Humanos , Lisencefalia/patologia , Imagem por Ressonância Magnética , Mutação , Neuroimagem , Fenótipo
14.
J AAPOS ; 18(3): 291-3, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24767812

RESUMO

Wagner syndrome is a rare inherited vitreoretinopathy. We describe 3 related patients with Wagner syndrome who presented with congenital glaucoma at age 3 months and required multiple surgical interventions to control their intraocular pressure. All experienced visual loss and glaucomatous optic neuropathy.


Assuntos
Glaucoma/congênito , Glaucoma/etiologia , Degeneração Retiniana/complicações , Versicanas/deficiência , Anti-Hipertensivos/uso terapêutico , Feminino , Cirurgia Filtrante , Glaucoma/terapia , Humanos , Lactente , Pressão Intraocular , Doenças do Nervo Óptico/etiologia , Linhagem , Tonometria Ocular , Testes de Campo Visual , Campos Visuais
15.
Nat Genet ; 46(5): 510-515, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705253

RESUMO

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3ß (GSK-3ß). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3ß activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT-related megalencephaly syndromes.


Assuntos
Anormalidades Múltiplas/genética , Ciclina D2/genética , Hidrocefalia/genética , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/genética , Polidactilia/genética , Animais , Sequência de Bases , Western Blotting , Bromodesoxiuridina , Eletroporação , Exoma/genética , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA , Síndrome
16.
J Neuropsychiatry Clin Neurosci ; 25(1): 26-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23487190

RESUMO

Periventricular heterotopia (PH) is a disorder of neuronal migration. Previous clinical reports of PH have largely focused on the seizure-related and neurodevelopmental consequences of this condition. The authors report four unrelated individuals with PH, with particular emphasis on their behavioral and psychiatric morbidity. A review of the literature suggests that neuropsychiatric presentations are an underrecognized consequence of PH. Clinicians need to be alert to psychiatric complications associated with PH and related disorders of neuronal migration.


Assuntos
Transtornos Mentais/complicações , Heterotopia Nodular Periventricular/complicações , Adolescente , Adulto , Feminino , Humanos , Imagem por Ressonância Magnética , Adulto Jovem
17.
Brain ; 136(Pt 2): 536-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23361065

RESUMO

Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually single-gene disorders affecting neuronal migration during cerebral cortical development. Polymicrogyria has been associated with genetic and environmental causes and is considered a malformation secondary to abnormal post-migrational development. However, the aetiology in many individuals with these cortical malformations is still unknown. During the past few years, mutations in a number of neuron-specific α- and ß-tubulin genes have been identified in both lissencephaly and polymicrogyria, usually associated with additional cerebral anomalies including callosal hypoplasia or agenesis, abnormal basal ganglia and cerebellar hypoplasia. The tubulin proteins form heterodimers that incorporate into microtubules, cytoskeletal structures essential for cell motility and function. In this study, we sequenced the TUBB2B and TUBA1A coding regions in 47 patients with a diagnosis of polymicrogyria and five with an atypical lissencephaly on neuroimaging. We identified four ß-tubulin and two α-tubulin mutations in patients with a spectrum of cortical and extra-cortical anomalies. Dysmorphic basal ganglia with an abnormal internal capsule were the most consistent feature. One of the patients with a TUBB2B mutation had a lissencephalic phenotype, similar to that previously associated with a TUBA1A mutation. The remainder had a polymicrogyria-like cortical dysplasia, but the grey matter malformation was not typical of that seen in 'classical' polymicrogyria. We propose that the cortical malformations associated with these genes represent a recognizable tubulinopathy-associated spectrum that ranges from lissencephalic to polymicrogyric cortical dysplasias, suggesting shared pathogenic mechanisms in terms of microtubular function and interaction with microtubule-associated proteins.


Assuntos
Homologia de Genes/genética , Lisencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Sequência de Aminoácidos , Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Lisencefalia/diagnóstico , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Dados de Sequência Molecular , Tubulina (Proteína)/química
18.
Eur J Hum Genet ; 21(3): 352-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22739342

RESUMO

Wagner syndrome (WS) is an autosomal dominant vitreoretinopathy affecting various ocular features and is caused by mutations in the canonical splice sites of the VCAN gene, which encodes the large chondroitin sulfate proteoglycan, versican. We report the identification of novel splice acceptor and donor-site mutations (c.4004-1G>C and c.9265+2T>A) in two large WS families from France and the United Kingdom. To characterize their pathogenic mechanisms we performed qRT-PCR experiments on RNA from patient-derived tissues (venous blood and skin fibroblasts). We also analyzed RNA from the original Swiss family reported by Wagner (who has the previously reported c.9265+1G>A mutation). All three mutations resulted in a quantitative increase of transcript variants lacking exons 7 and/or 8. However, the magnitude of the increase varied between tissues and mutations. We discuss altered balance of VCAN splice variants in combination with reduction in glycosaminoglycan protein modifications as possible pathogenic mechanisms.


Assuntos
Processamento Alternativo , Oftalmopatias/genética , Versicanas/genética , Feminino , Fibroblastos , Humanos , Masculino , Mutação , Linhagem , Síndrome
19.
Nat Genet ; 44(4): 440-4, S1-2, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366783

RESUMO

Brain malformations are individually rare but collectively common causes of developmental disabilities. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin-encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Encéfalo/anormalidades , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Coloboma/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/genética , Fator de Transcrição PAX9/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Síndrome
20.
Eur J Hum Genet ; 20(4): 381-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22126750

RESUMO

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Heterogeneidade Genética , Doenças Hematológicas/genética , Mutação , Proteínas de Neoplasias/genética , Fenótipo , Doenças Vestibulares/genética , Estudos de Coortes , Face/anormalidades , Feminino , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA