Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4957, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673082

RESUMO

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.

2.
Hum Mol Genet ; 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31691812

RESUMO

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTLs in subcutaneous adipose tissue from 770 participants in the METSIM study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio (WHRadjBMI) from the GIANT consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct, or secondary, eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14, and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.

3.
Am J Hum Genet ; 105(4): 773-787, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564431

RESUMO

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.

4.
Nat Genet ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578528

RESUMO

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

5.
JCI Insight ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600170

RESUMO

BACKGROUND: The presence of an early repolarization pattern (ERP) on the surface electrocardiogram (ECG) is associated with risk of ventricular fibrillation and sudden cardiac death. Family studies have shown that ERP is a highly heritable trait but molecular genetic determinants are unknown. METHODS: To identify genetic susceptibility loci for ERP, we performed a GWAS and meta-analysis in 2,181 cases and 23,641 controls of European ancestry. RESULTS: We identified a genome-wide significant (p<5E-8) locus in the KCND3 (potassium voltage gated channel subfamily D member 3) gene that was successfully replicated in additional 1,124 cases and 12,510 controls. A subsequent joint meta-analysis of the discovery and replication cohorts identified rs1545300 as the lead SNP at the KCND3 locus (OR 0.82 per minor T allele, p=7.7E-12), but did not reveal additional loci. Co-localization analyses indicate causal effects of KCND3 gene expression levels on ERP in both cardiac left ventricle and tibial artery. CONCLUSIONS: In this study we identified for the first time a genome-wide significant association of a genetic variant with ERP. Our findings of a locus in the KCND3 gene not only provide insights into the genetic determinants but also into the pathophysiological mechanism of ERP, discovering a promising candidate for functional studies. FUNDING: For detailed information per study, see Acknowledgments.

6.
Nat Commun ; 10(1): 4130, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511532

RESUMO

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.

7.
Genet Epidemiol ; 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31520493

RESUMO

Individual sequencing studies often have limited sample sizes and so limited power to detect trait associations with rare variants. A common strategy is to aggregate data from multiple studies. For studying rare variants, jointly calling all samples together is the gold standard strategy but can be difficult to implement due to privacy restrictions and computational burden. Here, we compare joint calling to the alternative of single-study calling in terms of variant detection sensitivity and genotype accuracy as a function of sequencing coverage and assess their impact on downstream association analysis. To do so, we analyze deep-coverage (~82×) exome and low-coverage (~5×) genome sequence data on 2,250 individuals from the Genetics of Type 2 Diabetes study jointly and separately within five geographic cohorts. For rare single nucleotide variants (SNVs): (a) ≥97% of discovered SNVs are found by both calling strategies; (b) nonreference concordance with a set of highly accurate genotypes is ≥99% for both calling strategies; (c) meta-analysis has similar power to joint analysis in deep-coverage sequence data but can be less powerful in low-coverage sequence data. Given similar data processing and quality control steps, we recommend single-study calling as a viable alternative to joint calling for analyzing SNVs of all minor allele frequency in deep-coverage data.

8.
Sci Rep ; 9(1): 11995, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427613

RESUMO

Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.

9.
Nat Genet ; 51(6): 957-972, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31152163

RESUMO

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.


Assuntos
Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas , Característica Quantitativa Herdável , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Mapeamento Cromossômico , Grupo com Ancestrais do Continente Europeu , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Humanos , Padrões de Herança , Testes de Função Renal , Fenótipo , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/urina , Uromodulina/urina
10.
Nature ; 570(7759): 71-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118516

RESUMO

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.


Assuntos
Diabetes Mellitus Tipo 2/genética , Exoma/genética , Sequenciamento Completo do Exoma , Animais , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout
12.
Nat Commun ; 9(1): 4455, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367059

RESUMO

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.

13.
Bioinformatics ; 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30204848

RESUMO

Summary: Estimating linkage disequilibrium (LD) is essential for a wide range of summary statistics-based association methods for genome-wide association studies. Large genetic datasets, e.g. the TOPMed WGS project and UK Biobank, enable more accurate and comprehensive LD estimates, but increase the computational burden of LD estimation. Here, we describe emeraLD (Efficient Methods for Estimation and Random Access of LD), a computational tool that leverages sparsity and haplotype structure to estimate LD up to 2 orders of magnitude faster than current tools. Availability and implementation: emeraLD is implemented in C++, and is open source under GPLv3. Source code and documentation are freely available at http://github.com/statgen/emeraLD. Supplementary information: Supplementary data are available at Bioinformatics online.

14.
G3 (Bethesda) ; 8(10): 3255-3267, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30131328

RESUMO

The emergence of very large cohorts in genomic research has facilitated a focus on genotype-imputation strategies to power rare variant association. These strategies have benefited from improvements in imputation methods and association tests, however little attention has been paid to ways in which array design can increase rare variant association power. Therefore, we developed a novel framework to select tag SNPs using the reference panel of 26 populations from Phase 3 of the 1000 Genomes Project. We evaluate tag SNP performance via mean imputed r2 at untyped sites using leave-one-out internal validation and standard imputation methods, rather than pairwise linkage disequilibrium. Moving beyond pairwise metrics allows us to account for haplotype diversity across the genome for improve imputation accuracy and demonstrates population-specific biases from pairwise estimates. We also examine array design strategies that contrast multi-ethnic cohorts vs. single populations, and show a boost in performance for the former can be obtained by prioritizing tag SNPs that contribute information across multiple populations simultaneously. Using our framework, we demonstrate increased imputation accuracy for rare variants (frequency < 1%) by 0.5-3.1% for an array of one million sites and 0.7-7.1% for an array of 500,000 sites, depending on the population. Finally, we show how recent explosive growth in non-African populations means tag SNPs capture on average 30% fewer other variants than in African populations. The unified framework presented here will enable investigators to make informed decisions for the design of new arrays, and help empower the next phase of rare variant association for global health.

15.
Am J Hum Genet ; 102(4): 620-635, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625024

RESUMO

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and ß cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by ß cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.

16.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481666

RESUMO

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.

18.
Proc Natl Acad Sci U S A ; 115(2): 379-384, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279374

RESUMO

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética , Americanos Mexicanos/genética , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/patologia , Saúde da Família , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Locos de Características Quantitativas/genética , Sequenciamento Completo do Genoma/métodos
19.
Sci Data ; 4: 170179, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257133

RESUMO

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Variação Genética , Grupo com Ancestrais do Continente Europeu , Humanos
20.
PLoS One ; 12(11): e0186518, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161273

RESUMO

BACKGROUND: The evaluation of less frequent genetic variants and their effect on complex disease pose new challenges for genomic research. To investigate whether epigenetic data can be used to inform aggregate rare-variant association methods (RVAM), we assessed whether variants more significantly associated with colorectal cancer (CRC) were preferentially located in non-coding regulatory regions, and whether enrichment was specific to colorectal tissues. METHODS: Active regulatory elements (ARE) were mapped using data from 127 tissues and cell-types from NIH Roadmap Epigenomics and Encyclopedia of DNA Elements (ENCODE) projects. We investigated whether CRC association p-values were more significant for common variants inside versus outside AREs, or 2) inside colorectal (CR) AREs versus AREs of other tissues and cell-types. We employed an integrative epigenomic RVAM for variants with allele frequency <1%. Gene sets were defined as ARE variants within 200 kilobases of a transcription start site (TSS) using either CR ARE or ARE from non-digestive tissues. CRC-set association p-values were used to evaluate enrichment of less frequent variant associations in CR ARE versus non-digestive ARE. RESULTS: ARE from 126/127 tissues and cell-types were significantly enriched for stronger CRC-variant associations. Strongest enrichment was observed for digestive tissues and immune cell types. CR-specific ARE were also enriched for stronger CRC-variant associations compared to ARE combined across non-digestive tissues (p-value = 9.6 × 10-4). Additionally, we found enrichment of stronger CRC association p-values for rare variant sets of CR ARE compared to non-digestive ARE (p-value = 0.029). CONCLUSIONS: Integrative epigenomic RVAM may enable discovery of less frequent variants associated with CRC, and ARE of digestive and immune tissues are most informative. Although distance-based aggregation of less frequent variants in CR ARE surrounding TSS showed modest enrichment, future association studies would likely benefit from joint analysis of transcriptomes and epigenomes to better link regulatory variation with target genes.


Assuntos
Neoplasias Colorretais/genética , Epigenômica , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Neoplasias Colorretais/patologia , Frequência do Gene , Estudo de Associação Genômica Ampla , Genômica , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA