Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
PLoS One ; 12(11): e0188315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145509


Many solutes have been reported to remain at higher plasma levels relative to normal than the standard index solute urea in hemodialysis patients. Untargeted mass spectrometry was employed to compare solute levels in plasma and plasma ultrafiltrate of hemodialysis patients and normal subjects. Quantitative assays were employed to check the accuracy of untargeted results for selected solutes and additional measurements were made in dialysate and urine to estimate solute clearances and production. Comparison of peak areas indicated that many solutes accumulated to high levels in hemodialysis patients, with average peak areas in plasma ultrafiltrate of dialysis patients being more than 100 times greater than those in normals for 123 features. Most of these mass spectrometric features were identified only by their mass values. Untargeted analysis correctly ranked the accumulation of 5 solutes which were quantitatively assayed but tended to overestimate its extent. Mathematical modeling showed that the elevation of plasma levels for these solutes could be accounted for by a low dialytic to native kidney clearance ratio and a high dialytic clearance relative to the volume of the accessible compartment. Numerous solutes accumulate to high levels in hemodialysis patients because dialysis does not replicate the clearance provided by the native kidney. Many of these solutes remain to be chemically identified and their pathogenic potential elucidated.

Espectrometria de Massas/métodos , Diálise Renal , Feminino , Humanos , Masculino
Nephrol Dial Transplant ; 31(8): 1335-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27190347


BACKGROUND: The protein-bound solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) accumulate to high plasma levels in renal failure and have been associated with adverse events. The clearance of these bound solutes can be altered independently of the urea clearance by changing the dialysate flow and dialyzer size. This study tested whether a sustained difference in clearance would change the plasma levels of PCS and IS. METHODS: Fourteen patients on thrice-weekly nocturnal hemodialysis completed a crossover study of two periods designed to achieve widely different bound solute clearances. We compared the changes in pre-dialysis plasma PCS and IS levels from baseline over the course of the two periods. RESULTS: The high-clearance period provided much higher PCS and IS clearances than the low-clearance period (PCS: 23 ± 4 mL/min versus 12 ± 3 mL/min, P < 0.001; IS: 30 ± 5 mL/min versus 17 ± 4 mL/min, P < 0.001). Despite the large difference in clearance, the high-clearance period did not have a different effect on PCS levels than the low-clearance period [from baseline, high: +11% (-5, +37) versus low: -8% (-18, +32), (median, 25th, 75th percentile), P = 0.50]. In contrast, the high-clearance period significantly lowered IS levels compared with the low-clearance period [from baseline, high: -4% (-17, +1) versus low: +22% (+14, +31), P < 0.001). The amount of PCS removed in the dialysate was significantly greater at the end of the high-clearance period [269 (206, 312) versus 199 (111, 232) mg per treatment, P < 0.001], while the amount of IS removed was not different [140 (87, 196) versus 116 (89, 170) mg per treatment, P = 0.15]. CONCLUSIONS: These findings suggest that an increase in PCS generation prevents plasma levels from falling when the dialytic clearance is increased. Suppression of solute generation may be required to reduce plasma PCS levels in dialysis patients.

Cresóis/sangue , Soluções para Diálise/farmacocinética , Indicã/sangue , Diálise Renal/métodos , Insuficiência Renal/terapia , Ésteres do Ácido Sulfúrico/sangue , Biomarcadores/sangue , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/sangue