Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(21): 9931-9946, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31638797

RESUMO

RORγt is an important nuclear receptor that regulates the production of several pro-inflammatory cytokines such as IL-17 and IL-22. As a result, RORγt has been identified as a potential target for the treatment of various immunological disorders such as psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Structure and computer-assisted drug design led to the identification of a novel series of tricyclic RORγt inverse agonists with significantly improved in vitro activity in the reporter (Gal4) and human whole blood assays compared to our previous chemotype. Through careful structure activity relationship, several potent and selective RORγt inverse agonists have been identified. Pharmacokinetic studies allowed the identification of the lead molecule 32 with a low peak-to-trough ratio. This molecule showed excellent activity in an IL-2/IL-23-induced mouse pharmacodynamic study and demonstrated biologic-like efficacy in an IL-23-induced preclinical model of psoriasis.

2.
J Med Chem ; 62(7): 3228-3250, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30893553

RESUMO

Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fcε receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus. This article will outline the evolution of our strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose. With excellent in vivo efficacy and a very desirable tolerability profile, 5a (branebrutinib, BMS-986195) has advanced into clinical studies.

3.
Clin Pharmacokinet ; 57(8): 911-928, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29353349

RESUMO

Daclatasvir is a first-in-class, highly selective, hepatitis C virus, non-structural protein 5a polymerase replication complex inhibitor with picomolar potency and broad genotypic coverage in vitro. Daclatasvir undergoes rapid absorption, with a time to reach maximum plasma concentration of 1-2 h and an elimination half-life of ~ 10 to 14 h observed in single-ascending dose studies. Steady state was achieved by day 4 in multiple-ascending dose studies. Daclatasvir can be administered without regard to food or pH modifiers. Daclatasvir exposure is similar between healthy subjects and subjects infected with hepatitis C virus. Intrinsic factors such as age, race, or sex do not impact daclatasvir exposure. No dose adjustment is necessary for patients with any degree of hepatic or renal impairment. Daclatasvir has low-to-moderate clearance with the predominant route of elimination via cytochrome P450 3A4-mediated metabolism and P-glycoprotein excretion and intestinal secretion. Renal clearance is a minor route of elimination for daclatasvir. As a result, the dose of daclatasvir should be reduced from 60 to 30 mg once daily when co-administered with strong inhibitors of cytochrome P450 3A4. No dose adjustment is required when daclatasvir is co-administered with moderate inhibitors of cytochrome P450 3A4. The dose of daclatasvir should be increased from 60 to 90 mg once daily when co-administered with moderate inducers of cytochrome P450 3A4. Co-administration of daclatasvir with strong inducers of cytochrome P450 3A4 is contraindicated. Concurrent medications with inhibitory effects on P-glycoprotein without concurrent inhibition of cytochrome P450 3A4 are unlikely to cause marked changes in daclatasvir exposure, as the clearance of daclatasvir is through both cytochrome P450 3A4 and P-glycoprotein. The potential for daclatasvir to affect the pharmacokinetics of concomitantly administered drugs that are substrates of the cytochrome P450 enzyme system is low. In vitro, daclatasvir is a weak-to-moderate inhibitor of transporters including organic cation transporter 1, P-glycoprotein, organic transporting polypeptide 1B1, organic transporting polypeptide 1B3, and breast cancer resistance protein, although in clinical studies, daclatasvir has not altered the pharmacokinetics of concomitantly administered drugs that are substrates of these transporters to an appreciable degree, except for rosuvastatin. In summary, daclatasvir is a hepatitis C virus, non-structural protein 5a-selective inhibitor with a well-characterized pharmacokinetic profile that forms part of potent and well-tolerated all-oral treatment regimens for chronic hepatitis C virus infection.

5.
PLoS One ; 12(7): e0181782, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742141

RESUMO

Bruton's tyrosine kinase (BTK) regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA) and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjögren's syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM), blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation) in human B cells (IC50 ≤ 5 nM), inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA), including collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA). In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig) in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.


Assuntos
Artrite Experimental/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Animais , Formação de Anticorpos/efeitos dos fármacos , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Camundongos Endogâmicos BALB C , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteoclastos/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/imunologia , Ligante RANK/imunologia
6.
Bioorg Med Chem Lett ; 27(14): 3101-3106, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539220

RESUMO

A series of potent dual JAK1/3 inhibitors have been developed from a moderately selective JAK3 inhibitor. Substitution at the C6 position of the pyrrolopyridazine core with aryl groups provided exceptional biochemical potency against JAK1 and JAK3 while maintaining good selectivity against JAK2 and Tyk2. Translation to in vivo efficacy was observed in a murine model of chronic inflammation. X-ray co-crystal structure determination confirmed the presumed inhibitor binding orientation in JAK3. Efforts to reduce hERG channel inhibition will be described.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridazinas/química , Pirróis/química , Animais , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Inflamação/prevenção & controle , Concentração Inibidora 50 , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Piridazinas/síntese química , Piridazinas/farmacocinética , Pirróis/síntese química , Pirróis/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/metabolismo
7.
J Med Chem ; 60(12): 5193-5208, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28541707

RESUMO

PI3Kδ plays an important role controlling immune cell function and has therefore been identified as a potential target for the treatment of immunological disorders. This article highlights our work toward the identification of a potent, selective, and efficacious PI3Kδ inhibitor. Through careful SAR, the successful replacement of a polar pyrazole group by a simple chloro or trifluoromethyl group led to improved Caco-2 permeability, reduced Caco-2 efflux, reduced hERG PC activity, and increased selectivity profile while maintaining potency in the CD69 hWB assay. The optimization of the aryl substitution then identified a 4'-CN group that improved the human/rodent correlation in microsomal metabolic stability. Our lead molecule is very potent in PK/PD assays and highly efficacious in a mouse collagen-induced arthritis model.


Assuntos
Artrite Experimental/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Relação Estrutura-Atividade , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Células CACO-2/efeitos dos fármacos , Células CACO-2/imunologia , Cães , Canal de Potássio ERG1/metabolismo , Inibidores Enzimáticos/química , Feminino , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Coelhos
8.
J Med Chem ; 59(19): 9173-9200, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27583770

RESUMO

Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fcε receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis. This article details the structure-activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK. Of particular interest is that two atropisomeric centers were rotationally locked to provide a single, stable atropisomer, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities. With significantly enhanced potency and selectivity, excellent in vivo properties and efficacy, and a very desirable tolerability and safety profile, 14f (BMS-986142) was advanced into clinical studies.


Assuntos
Carbazóis/química , Carbazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Animais , Carbazóis/farmacocinética , Cristalografia por Raios X , Feminino , Humanos , Isomerismo , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/metabolismo , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Relação Estrutura-Atividade
9.
J Med Chem ; 59(17): 7915-35, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27531604

RESUMO

Bruton's tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.


Assuntos
Antirreumáticos/química , Carbazóis/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinonas/química , Administração Oral , Tirosina Quinase da Agamaglobulinemia , Animais , Antirreumáticos/síntese química , Antirreumáticos/farmacocinética , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Disponibilidade Biológica , Carbazóis/síntese química , Carbazóis/farmacocinética , Carbazóis/farmacologia , Linhagem Celular , Cristalografia por Raios X , Cães , Humanos , Macaca fascicularis , Camundongos , Microssomos Hepáticos/metabolismo , Permeabilidade , Proteínas Tirosina Quinases/química , Quinazolinonas/síntese química , Quinazolinonas/farmacocinética , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819663

RESUMO

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

11.
Bioorg Med Chem Lett ; 24(24): 5721-5726, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25453808

RESUMO

A new class of Janus kinase (JAK) inhibitors was discovered using a rationally designed pyrrolo[1,2-b]pyridazine-3-carboxamide scaffold. Preliminary studies identified (R)-(2,2-dimethylcyclopentyl)amine as a preferred C4 substituent on the pyrrolopyridazine core (3b). Incorporation of amino group to 3-position of the cyclopentane ring resulted in a series of JAK3 inhibitors (4g-4j) that potently inhibited IFNγ production in an IL2-induced whole blood assay and displayed high functional selectivity for JAK3-JAK1 pathway relative to JAK2. Further modifications led to the discovery of an orally bioavailable (2-fluoro-2-methylcyclopentyl)amino analogue 5g which is a nanomolar inhibitor of both JAK3 and TYK2, functionally selective for the JAK3-JAK1 pathway versus JAK2, and active in a human whole blood assay.


Assuntos
Descoberta de Drogas , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/química , Pirróis/química , Administração Oral , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual
12.
J Med Chem ; 57(5): 2013-32, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24521299

RESUMO

The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Área Sob a Curva , Cães , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Imidazóis/química , Imidazóis/farmacocinética , Espectroscopia de Ressonância Magnética , Ratos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
13.
J Med Chem ; 56(18): 7343-57, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23964740

RESUMO

Optimization of a 5-oxopyrrolopyridine series based upon structure-activity relationships (SARs) developed from our previous efforts on a number of related bicyclic series yielded compound 2s (BMS-767778) with an overall activity, selectivity, efficacy, PK, and developability profile suitable for progression into the clinic. SAR in the series and characterization of 2s are described.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Desenho de Drogas , Pirróis/química , Pirróis/farmacologia , Acetamidas/síntese química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Domínio Catalítico , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/síntese química , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Modelos Moleculares , Pirróis/síntese química , Especificidade por Substrato
14.
Anal Bioanal Chem ; 402(3): 1229-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22130720

RESUMO

High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) methods were developed for the quantification of a PEGylated scaffold protein drug in monkey plasma samples. The LC-MS/MS method was based on the extraction of the therapeutic protein with a water-miscible organic solvent and the subsequent trypsin digestion of the extract followed by the detection of a surrogate peptide. The assay was linear over a range of 10-3,000 ng/mL. The ELISA method utilized a therapeutic target-binding format in which the recombinant target antigen was used to capture the drug in the sample, followed by detection with an anti-PEG monoclonal antibody. The assay range was 30-2,000 ng/mL. A correlation study between the two methods was performed by measuring the drug concentrations in plasma samples from a single-dose pharmacokinetic (PK) study in cynomolgus monkeys following a 5-mg/kg subcutaneous administration (n = 4). In the early time points of the PK profile, the drug concentrations obtained by the LC-MS/MS method agreed very well with those obtained by the ELISA method. However, at later time points, the drug concentrations measured by the LC-MS/MS method were consistently higher than those measured by the ELISA method. The PK parameters calculated based on the concentration data showed that the two methods gave equivalent peak exposure (C(max)) at 24-48 h. However, the LC-MS/MS results exhibited about 1.53-fold higher total exposure (AUC(tot)) than the ELISA results. The discrepancy between the LC-MS/MS and ELISA results was investigated by conducting immunogenicity testing, anti-drug antibody (ADA) epitope mapping, and Western blot analysis of the drug concentrations coupled with Protein G separation. The results demonstrated the presence of ADA specific to the engineered antigen-binding region of the scaffold protein drug that interfered with the ability of the drug to bind to the target antigen used in the ELISA method. In the presence of the ADAs, the ELISA method measured only the active circulating drug (target-binding), while the LC-MS/MS method measured the total circulating drug. The work presented here indicates that the bioanalysis of protein drugs may be complicated owing to the presence of drug-binding endogenous components or ADAs in the post-dose (incurred) samples. The clear understanding of the behavior of different bioanalytical techniques vis-à-vis the potentially interfering components found in incurred samples is critical in selecting bioanalytical strategies for measuring protein drugs.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Preparações Farmacêuticas/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos/sangue , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/análise , Complexo Antígeno-Anticorpo/imunologia , Haplorrinos , Preparações Farmacêuticas/química , Polietilenoglicóis/química , Proteínas/química , Proteínas/imunologia
15.
Bioorg Med Chem Lett ; 21(22): 6646-51, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21996520

RESUMO

Design, synthesis, and SAR of 7-oxopyrrolopyridine-derived DPP4 inhibitors are described. The preferred stereochemistry of these atropisomeric biaryl analogs has been identified as Sa. Compound (+)-3t, with a K(i) against DPP4, DPP8, and DPP9 of 0.37 nM, 2.2, and 5.7 µM, respectively, showed a significant improvement in insulin response after single doses of 3 and 10 µmol/kg in ob/ob mice.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Piridinas/química , Piridinas/farmacologia , Animais , Domínio Catalítico , Diabetes Mellitus/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Humanos , Insulina/sangue , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Piridinas/farmacocinética , Pirróis/química , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Estereoisomerismo
16.
J Med Chem ; 53(15): 5620-8, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684603

RESUMO

Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Hipoglicemiantes/síntese química , Imidazóis/síntese química , Pirimidinas/síntese química , Animais , Domínio Catalítico , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/química , Cães , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Imidazóis/farmacocinética , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Obesos , Modelos Moleculares , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 20(15): 4395-8, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20598534

RESUMO

Several pyrazolo-, triazolo-, and imidazolopyrimidines were synthesized and evaluated as inhibitors of DPP4. Of these three classes of compounds, the imidazolopyrimidines displayed the greatest potency and demonstrated excellent selectivity over the other dipeptidyl peptidases. SAR evaluation for these scaffolds was described as they may represent potential treatments for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/síntese química , Inibidores de Proteases/síntese química , Pirimidinas/química , Dipeptidil Peptidase 4/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Pirimidinas/síntese química , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade
18.
J Med Chem ; 52(9): 2794-8, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19351168

RESUMO

A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.


Assuntos
Androgênios , Músculos/efeitos dos fármacos , Músculos/metabolismo , Oxazóis/química , Oxazóis/farmacologia , Animais , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Masculino , Modelos Moleculares , Conformação Molecular , Próstata/efeitos dos fármacos , Próstata/metabolismo , Ratos , Especificidade por Substrato
19.
Drug Metab Dispos ; 37(6): 1164-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19251818

RESUMO

Saxagliptin is a potent, selective, reversible dipeptidyl peptidase 4 (DPP4) inhibitor specifically designed for extended inhibition of the DPP4 enzyme and is currently under development for the treatment of type-2 diabetes. The pharmacokinetics of saxagliptin were evaluated in rats, dogs, and monkeys and used to predict its human pharmacokinetics. Saxagliptin was rapidly absorbed and had good bioavailability (50-75%) in the species tested. The plasma clearance of saxagliptin was higher in rats (115 ml/min/kg) than in dogs (9.3 ml/min/kg) and monkeys (14.5 ml/min/kg) and was predicted to be low to moderate in humans. The plasma elimination half-life was between 2.1 and 4.4 h in rats, dogs, and monkeys, and both metabolism and renal excretion contributed to the overall elimination. The primary metabolic clearance pathway involved the formation of a significant circulating, pharmacologically active hydroxylated metabolite, M2. The volume of distribution values observed in rats, dogs, and monkeys (1.3-5.2 l/kg) and predicted for humans (2.7 l/kg) were greater than those for total body water, indicating extravascular distribution. The in vitro serum protein binding was low (< or =30%) in rats, dogs, monkeys, and humans. After intra-arterial administration of saxagliptin to Sprague-Dawley and Zucker diabetic fatty rats, higher levels of saxagliptin and M2 were observed in the intestine (a proposed major site of drug action) relative to that in plasma. Saxagliptin has prolonged pharmacodynamic properties relative to its plasma pharmacokinetic profile, presumably due to additional contributions from M2, distribution of saxagliptin and M2 to the intestinal tissue, and prolonged dissociation of both saxagliptin and M2 from DPP4.


Assuntos
Adamantano/análogos & derivados , Dipeptídeos/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Especificidade da Espécie , Adamantano/farmacocinética , Animais , Disponibilidade Biológica , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Haplorrinos , Humanos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ratos Zucker
20.
Biopharm Drug Dispos ; 29(8): 455-68, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18989850

RESUMO

The oral pharmacokinetics (concentration-time profile) of four proprietary compounds in humans were predicted using the C(vss)-MRT method. The first step was to demonstrate superposition of intravenous (i.v.) pharmacokinetic profiles of preclinical species following mathematical transformation of their respective concentration-time curves using the corresponding C(vss) (where C(vss)=dose/Vss; Vss is the volume of distribution at steady state) and mean residence time (MRT) values. The resultant profiles were then back-transformed to estimate human i.v. plasma concentration-time profiles using human C(vss) and MRT values. Human C(vss) and MRT values were estimated from projected human Vss and CL values. Projection of CL was based on scaled (in vitro) metabolic clearance, simple allometry with and without various correction factors and the unbound fraction corrected intercept method. Vss values were estimated by allometric scaling with and without correction for interspecies differences in plasma protein binding. The predicted human i.v. profiles, in combination with the estimated mean absorption rate constants and bioavailability, were then used to simulate the oral pharmacokinetics in human using one- or multi-compartment kinetic models. Overall, with this approach, key oral pharmacokinetic parameters such as AUC, C(max), C(min) and oral plasma T((1/2)) were projected to be within two-fold of the actual values in humans.


Assuntos
Farmacocinética , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Cães , Humanos , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA