Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 98(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32175579

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) compromises pig performance. However, increasing standardized ileal digestible Lys per Mcal metabolizable energy (SID Lys:ME) above requirement has been shown to mitigate reduced performance seen during a porcine reproductive and respiratory syndrome (PRRS) virus challenge. The objective of this study was to evaluate the effects of increasing the dietary SID Lys:ME from 100% National Research Council (NRC) requirement to 120% of the requirement in vaccinated (vac+; modified live vaccine Ingelvac PRRS) and non-vaccinated (vac-; no PRRS vaccine) grower pigs subjected to a PRRSV challenge. In addition, the dietary formulation approach to achieve the 120% ratio by increasing Lys relative to energy (HL) or diluting energy in relation to Lys (LE) was evaluated. This allowed us to test the hypothesis that pigs undergoing a health challenge would have the ability to eat to their energy needs. Within vaccine status, 195 mixed-sex pigs, vac+ (35.2 ± 0.60 kg body weight [BW]) and vac- (35.2 ± 0.65 kg BW) were randomly allotted to one of three dietary treatments (2.67, 3.23, or 3.22 g SID Lys:ME) for a 42-d PRRS virus challenge study representing 100%, 120%, and 120% of NRC requirement, respectively. Pigs were randomly allotted across two barns, each containing 24 pens with 7 to 10 pigs per pen (8 pens per diet per vaccine status). On day post-inoculation 0, both barns were inoculated with PRRSV and started on experimental diets. Within vaccine status, weekly and overall challenge period pig performance were assessed. In both vac+ (P < 0.05) and vac- (P < 0.05) pigs, the HL and LE diets increased end BW and overall average daily gain (ADG) ADG compared with pigs fed the control diet (P < 0.05). Overall, average daily feed intake (ADFI) during the challenge period was greater (P < 0.05) for pigs fed the LE diet compared with pigs fed control and HL treatments, regardless of vaccine status (20% and 17% higher ADFI than the control in vac+ and vac- pigs, respectively). The HL vac+ pigs had the greatest gain to feed (G:F) compared with the control and LE pigs (0.438 vs. 0.394 and 0.391 kg/kg, respectively; P < 0.01). Feed efficiency was not impacted (P > 0.10) by treatment in the vac- pigs. In summary, PRRSV-challenged grower pigs consumed feed to meet their energy needs as indicated by the increase in ADFI when energy was diluted in the (LE) diet, compared with control pigs. In both PRRS vac+ and vac- pigs subsequently challenged with PRRSV, regardless of formulation approach, fed 120% SID Lys:ME diets resulted in enhanced overall growth performance.

2.
PLoS One ; 15(1): e0227265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910236

RESUMO

Pathogen challenges are often accompanied by reductions in feed intake, making it difficult to differentiate impacts of reduced feed intake from impacts of pathogen on various response parameters. Therefore, the objective of this study was to determine the impact of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) and feed intake on parameters of jejunal function and integrity in growing pigs. Twenty-four pigs (11.34 ± 1.54 kg BW) were randomly selected and allotted to 1 of 3 treatments (n = 8 pigs/treatment): 1) PRRSV naïve, ad libitum fed (Ad), 2) PRRSV-inoculated, ad libitum fed (PRRS+), and 3) PRRSV naïve, pair-fed to the PRRS+ pigs' daily feed intake (PF). At 17 days post inoculation, all pigs were euthanized and the jejunum was collected for analysis. At days post inoculation 17, PRRS+ and PF pigs had decreased (P < 0.05) transepithelial resistance compared with Ad pigs; whereas fluorescein isothiocyanate-dextran 4 kDa permeability was not different among treatments. Active glucose transport was increased (P < 0.05) in PRRS+ and PF pigs compared with Ad pigs. Brush border carbohydrase activity was reduced in PRRS+ pigs compared with PF pigs for lactase (55%; P = 0.015), sucrase (37%; P = 0.002), and maltase (30%; P = 0.015). For all three carbohydrases, Ad pigs had activities intermediate that of PRRS+ and PF pigs. The mRNA abundance of the tight junction proteins claudin 2, claudin 3, claudin 4, occludin, and zonula occludens-1 were reduced in PRRS+ pigs compared with Ad pigs; however, neither the total protein abundance nor the cellular compartmentalization of these tight junction proteins differed among treatments. Taken together, this study demonstrates that the changes that occur to intestinal epithelium structure, function, and integrity during a systemic PRRSV challenge can be partially explained by reductions in feed intake. Further, long term adaptation to PRRSV challenge and caloric restriction does reduce intestinal transepithelial resistance but does not appear to reduce the integrity of tight junction protein complexes.

3.
J Anim Sci ; 97(12): 4710-4720, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31634906

RESUMO

The objective of this study was to determine the influence of a dual respiratory and enteric pathogen challenge on growth performance, carcass composition, and pork quality of high and low feed efficient pigs. Pigs divergently selected for low and high residual feed intake (RFI, ~68 kg) from the 11th generation of Iowa State University RFI project were used to represent high and low feed efficiency. To elicit a dual pathogen challenge, half of the pigs (n = 12/line) were inoculated with Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (MhLI) on days post-inoculation (dpi) 0. Pigs in a separate room of the barn were not inoculated and used as controls (n = 12/RFI line). Pigs were weighed and feed intake was recorded to calculate ADG, ADFI, and G:F for the acclimation period (period 1: dpi -21 to 0), during peak infection (period 2: dpi 0 to 42), and during the remaining growth period to reach market weight (period 3: dpi 42 to harvest). At ~125 kg, pigs were harvested using standard commercial procedures. Carcasses were evaluated for composition (weight, fat free lean, loin eye area, 10th rib fat depth) and meat quality (pH decline, temperature decline, Hunter L, a, and b, subjective color and marbling, star probe, drip loss, cook loss, proximate composition, and desmin degradation). Challenged pigs had lesser ADFI than controls during period 2 (P < 0.05), but had greater ADG and G:F during period 3 (P < 0.05). Selection for feed efficiency did not result in a differential response to MhLI (P > 0.05). Loin chops from the less feed efficient, high RFI pigs, had greater drip loss, greater cook loss, lesser moisture content, greater Hunter L values, and greater Hunter b values (P < 0.05) than loin chops from low RFI pigs. Infection status did not significantly affect carcass composition or pork quality traits (P > 0.05). These results indicate that a MhLI challenge early in growth did not significantly affect ultimate carcass composition or meat quality traits. Selection for greater feed efficiency in pigs did not affect their response to pathogenic challenge.

4.
BMC Genomics ; 20(1): 728, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610780

RESUMO

BACKGROUND: It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs' immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells. RESULTS: LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p = 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least one time point post injection relative to baseline in at least one line (n = 4 per line) (|log2(fold change)| ≥ log2(1.2); q < 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline. But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense response, immune response, and signaling were enriched in different co-expression clusters of genes responsive to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line at 24 hpi. CONCLUSIONS: The pig lines divergently selected for RFI had a largely similar response to LPS stimulation. However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig's acute systemic inflammatory response to LPS, although slight differences in intensity and duration may occur.


Assuntos
Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Síndrome de Resposta Inflamatória Sistêmica/genética , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Locos de Características Quantitativas , Análise de Sequência de RNA/veterinária , Sus scrofa , Suínos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente
5.
J Anim Sci ; 97(9): 3617-3625, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31298271

RESUMO

Supplemental arginine (Arg) during gestation purportedly benefits fetal development. However, the benefits of a gestational Arg dietary strategy in commercial production are unclear. Therefore, the objectives of this study examined Arg supplementation during different gestational stages and the effects on gilt reproductive performance. Pubertal gilts (n = 548) were allocated into 4 treatment groups: Control (n = 143; 0% supplemental Arg) or 1 of 3 supplemental Arg (1% as fed) treatments: from 15 to 45 d of gestation (n = 138; Early-Arg); from 15 d of gestation until farrowing (n = 139; Full-Arg); or from 85 d of gestation until farrowing (n = 128; Late-Arg). At farrowing, the number of total born (TB), born alive (BA), stillborn piglets (SB), mummified fetuses (MM), and individual piglet birth weights (BiWt) were recorded. The wean-to-estrus interval (WEI) and subsequent sow reproductive performance (to third parity) were also monitored. No significant effect of supplemental Arg during any part of P0 gestation was observed for TB, BA, SB, or MM (P ≥ 0.29). Offspring BiWt and variation among individual piglet birth weights did not differ (P = 0.42 and 0.89, respectively) among treatment groups. Following weaning, the WEI was similar among treatments (average of 8.0 ± 0.8 d; P = 0.88). Litter performance over 3 parities revealed a decrease (P = 0.02) in BA for Early-Arg fed gilts compared with all other treatments, whereas TB and WEI were similar among treatments over 3 parities (P > 0.05). There was an increased proportion of sows with average size litters (12 to 16 TB) from the Full-Arg treatment sows (76.8% ± 3.7%) when compared with Control (58.7% ± 4.2%; P = 0.01); however, the proportion of sows with high (>16 TB) and low (<12 TB) litters was not different among treatments (P = 0.20). These results suggest that gestational Arg supplementation had a minimal impact on reproductive performance in first parity sows. These data underscore the complexity of AA supplementation and the need for continued research into understanding how and when utilizing a gestational dietary Arg strategy can optimize fetal development and sow performance.


Assuntos
Arginina/farmacologia , Suplementos Nutricionais , Reprodução , Suínos/fisiologia , Animais , Peso ao Nascer/efeitos dos fármacos , Dieta/veterinária , Estro/efeitos dos fármacos , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Paridade/efeitos dos fármacos , Parto/efeitos dos fármacos , Gravidez , Desmame
6.
Front Immunol ; 10: 1381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275319

RESUMO

Interactions between diet, the microbiota, and the host set the ecological conditions in the gut and have broad implications for health. Prebiotics are dietary compounds that may shift conditions toward health by promoting the growth of beneficial microbes that produce metabolites capable of modulating host cells. This study's objective was to assess how a dietary prebiotic could impact host tissues via modulation of the intestinal microbiota. Pigs fed a diet amended with 5% resistant potato starch (RPS) exhibited alterations associated with gut health relative to swine fed an unamended control diet (CON). RPS intake increased abundances of anaerobic Clostridia in feces and several tissues, as well as intestinal concentrations of butyrate. Functional gene amplicons suggested bacteria similar to Anaerostipes hadrus were stimulated by RPS intake. The CON treatment exhibited increased abundances of several genera of Proteobacteria (which utilize respiratory metabolisms) in several intestinal locations. RPS intake increased the abundance of regulatory T cells in the cecum, but not periphery, and cecal immune status alterations were indicative of enhanced mucosal defenses. A network analysis of host and microbial changes in the cecum revealed that regulatory T cells positively correlated with butyrate concentration, luminal IgA concentration, expression of IL-6 and DEF1B, and several mucosa-associated bacterial taxa. Thus, the administration of RPS modulated the microbiota and host immune status, altering markers of cecal barrier function and immunological tolerance, and suggesting a reduced niche for bacterial respiration.

7.
J Anim Sci ; 97(8): 3213-3227, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31212312

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) virus is one of the most economically significant pig pathogens worldwide. However, the metabolic explanation for reductions in tissue accretion observed in growing pigs remains poorly defined. Additionally, PRRS virus challenge is often accompanied by reduced feed intake, making it difficult to discern which effects are virus vs. feed intake driven. To account for this, a pair-fed model was employed to examine the effects of PRRS challenge and nutrient restriction on skeletal muscle and liver metabolism. Forty-eight pigs were randomly selected (13.1 ± 1.97 kg BW) and allotted to 1 of 3 treatments (n = 16 pigs/treatment): 1) PRRS naïve, ad libitum fed (Ad), 2) PRRS-inoculated, ad libitum fed (PRRS+), and 3) PRRS naïve, pair-fed to the PRRS-inoculated pigs' daily feed intake (PF). At days postinoculation (dpi) 10 and 17, 8 pigs per treatment were euthanized and tissues collected. Tissues were assayed for markers of proteolysis (LM only), protein synthesis (LM only), oxidative stress (LM only), gluconeogenesis (liver), and glycogen concentrations (LM and liver). Growth performance, feed intake, and feed efficiency were all reduced in both PRRS+ and PF pigs compared with Ad pigs (P < 0.001). Furthermore, growth performance and feed efficiency were additionally reduced in PRRS+ pigs compared with PF pigs (P < 0.05). Activity of most markers of LM proteolysis (µ-calpain, 20S proteasome, and caspase 3/7) was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs, although activity of m-calpain was increased in PRRS+ pigs compared with Ad pigs (P = 0.025) at dpi 17. Muscle reactive oxygen species production was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs. However, phosphorylation of protein synthesis markers was decreased in PRRS+ pigs compared with both Ad (P < 0.05) and PF (P < 0.05) pigs. Liver gluconeogenesis was not increased as a result of PRRS; however, liver glycogen was decreased (P < 0.01) in PRRS+ pigs compared with Ad and PF pigs at both time points. Taken together, this work demonstrates the differential impact a viral challenge and nutrient restriction have on metabolism of growing pigs. Although markers of skeletal muscle proteolysis showed limited evidence of increase, markers of skeletal muscle synthesis were reduced during PRRS viral challenge. Furthermore, liver glycogenolysis seems to provide PRRS+ pigs with glucose needed to fuel the immune response during viral challenge.


Assuntos
Gluconeogênese , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteólise , Animais , Biomarcadores/metabolismo , Calpaína/metabolismo , Ingestão de Alimentos , Feminino , Fígado/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Síndrome Respiratória e Reprodutiva Suína/virologia , Distribuição Aleatória , Suínos
8.
J Vet Diagn Invest ; 31(4): 537-545, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31170897

RESUMO

Zinc oxide (ZnO) is commonly fed to pigs at pharmacologic concentrations (2,000-3,000 ppm) for the first 3 wk post-weaning to increase growth and reduce enteric bacterial disease. The safety of this high-dose treatment is assumed based upon lower bioavailability of ZnO compared to other common forms of Zn in feed; however, limited data are available regarding the specific serum and tissue concentrations of Zn expected in animals experiencing overload following feeding of excessive ZnO. Fifty-five 3-wk-old pigs were divided into 5 groups receiving various concentrations of ZnO (0-6,000 ppm) for 3 wk. Pigs receiving 6,000 ppm ZnO had higher mean pancreatic Zn concentrations (p < 0.001) compared to other treatments, and higher pancreatic Zn concentrations were associated with pancreatic acinar cell apoptosis (p < 0.0001). Hepatic Zn concentrations were highest for pigs receiving 6,000 ppm ZnO (mean ± SEM; 729 ± 264 ppm) and significantly higher than all other groups (p < 0.0001), with controls having concentrations <60 ppm. Similarly, serum Zn was highest in pigs receiving 6,000 ppm ZnO (4.81 ± 2.31 ppm) and significantly higher than all groups (controls, <1 ppm). Additionally, as pigs became overloaded with Zn, there were significant reductions in serum Cu and both serum and hepatic Se. Hepatic and serum Zn concentrations >500 ppm and >2 ppm, respectively, are indicative of Zn overload, and dietary trace mineral analysis is warranted if expected inclusion rates are ≤3,000 ppm ZnO.


Assuntos
Doenças dos Suínos/induzido quimicamente , Óxido de Zinco/administração & dosagem , Zinco/sangue , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Fígado/efeitos dos fármacos , Suínos , Óxido de Zinco/química
9.
PLoS One ; 14(4): e0216070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31026263

RESUMO

Antibiotics have been used for over 60 years by the swine industry to improve growth performance and feed efficiency. With rising concerns over antimicrobial resistance and government restrictions such as the Veterinary Feed Directive on usage of in-feed antibiotics, alternatives to feeding antibiotic growth promoters (AGPs) to nursery pigs are needed. However, the mechanism of action by which AGPs work is poorly understood. Thus, the objective of this study was to investigate the mechanisms of action by which AGPs increase nursery pig performance. Over two replicates, 24 weaned pigs (6.75 ± 0.75 kg body weight) were randomly allotted to either control (CON, n = 12) or sub-therapeutic antibiotic (sCTC, n = 12) treatments and housed individually. A 2-phase corn-soybean-based nursery diet was fed, with the sCTC diets containing 40 ppm feed-grade chlortetracycline. Individual pig average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated weekly for 5 weeks. Thereafter, all pigs were euthanized and necropsied for tissue collection. The overall performance data indicated that sCTC pigs had increased ADG (0.43 vs. 0.32 kg/d, P = 0.001) and ADFI (0.51 vs. 0.37 kg/d, P = 0.002) compared with CON pigs; however, G:F was not different as a result of dietary treatment (0.85 vs. 0.88, P = 0.617). Intestinal barrier permeability, ileal active nutrient transport, and cecal short chain fatty acid concentrations did not differ (P > 0.10) due to dietary treatment, however changes in several ileum mRNA transcripts suggest that inflammation may be reduced in sCTC pigs. Further, the changes observed in the proteomes of the ileum, colon, skeletal muscle, and liver suggest that the sub-therapeutic mode of action of AGPs may include post-absorptive changes and warrants further investigation.


Assuntos
Antibacterianos/farmacologia , Suínos/fisiologia , Animais , Bactérias/efeitos dos fármacos , Biomarcadores/metabolismo , Dieta , Ácidos Graxos/metabolismo , Feminino , Fermentação/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Permeabilidade , Proteoma/metabolismo , Suínos/genética , Suínos/crescimento & desenvolvimento
10.
J Anim Sci ; 97(6): 2376-2384, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30980078

RESUMO

Lawsonia intracellularis (LI) and Mycoplasma hyopneumoniae (Mh) are 2 globally distributed pathogens that cause significant morbidity and mortality in grow-finish pigs. However, mechanisms that reduce growth and feed efficiency during LI and Mh infection are poorly defined. We hypothesized that reductions in performance are partially due to declines in intestinal function and integrity; thus, this study aimed to evaluate intestinal function and integrity of pigs during a 21-d Mh and LI dual challenge (MhLI). Littermate pairs of barrows (48.1 ± 6.7 kg BW) were selected; 1 pig from each pair was assigned to either MhLI challenge or nonchallenge treatments (n = 12). Pigs were individually housed, fed a corn-soybean diet, and allowed to acclimate for 21 d prior to inoculation. On days postinoculation (dpi) 0, MhLI pigs were dual inoculated with LI and Mh. On dpi 21, all pigs were euthanized for ileal and colon tissue collection. Formalin-fixed tissues were clinically scored and morphology analyzed, frozen tissues assayed for digestive enzyme activities, and fresh tissues mounted into modified Ussing Chambers to assess active nutrient transport, barrier integrity, and bacterial translocation. Data were analyzed using the Mixed Procedure of SAS with treatment as a fixed effect, age and start BW as covariates, and litter as a random effect. Compared with controls, MhLI pigs had decreased ADG (38%, P < 0.001), ADFI (25%, P < 0.001), and G:F (19%, P = 0.012). The MhLI dual challenge did not alter ileum morphology or transepithelial resistance (P > 0.10); however, ex vivo mucosal to serosal translocation of S. Typhimurium in the colon was increased (60%, P = 0.003) in MhLI pigs compared with controls. Additionally, MhLI pigs had increased ileal glucose transport (30%, P = 0.05) and decreased sucrase activity (30%, P = 0.049) compared with controls. This MhLI challenge antagonized intestinal function and integrity, and this may be a contributing factor to reduced pig performance.


Assuntos
Infecções por Desulfovibrionaceae/veterinária , Lawsonia (Bactéria)/fisiologia , Mycoplasma hyopneumoniae/fisiologia , Pneumonia Suína Micoplasmática/microbiologia , Doenças dos Suínos/microbiologia , Suínos/microbiologia , Ração Animal , Animais , Infecções por Desulfovibrionaceae/microbiologia , Dieta/veterinária , Ingestão de Alimentos , Interações Hospedeiro-Patógeno , Inflamação/veterinária , Intestinos/fisiologia , Masculino , Distribuição Aleatória , Soja , Estresse Fisiológico , Suínos/fisiologia , Zea mays
11.
J Anim Sci ; 97(5): 2139-2153, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-30888017

RESUMO

This study aimed to evaluate the effects of a source of dietary soluble (SF) and insoluble fiber (IF) without or with exogenous carbohydrases (xylanase, ß-glucanase, and pectinase) on diarrhea incidence, selected immune responses, and growth performance in enterotoxigenic Escherichia coli (ETEC)-challenged pigs. Sixty weaned pigs (6.9 ± 0.1 kg BW, ~23 d of age) were blocked by initial BW and placed in individual pens. Pens were randomly assigned to one of six treatments (n = 10 per treatment), including a nonchallenged control (NC), a positive challenge control (PC), the PC + a soluble fiber diet (10% sugar beet pulp) without (SF-) or with carbohydrases (SF+), and PC + an IF diet (15% corn distillers dried grains with solubles) without (IF-) or with carbohydrases (IF+). The control diet was primarily based on corn and soybean meal with 13.5% whey powder. The two sources of fiber were added at the expense of cornstarch in the control diet. Pigs were orally inoculated with 6 mL hemolytic F18 ETEC (~3.5 × 109 cfu/mL) or sham infected with 6 mL phosphate-buffered saline on day 7 (0 d postinoculation, dpi) postweaning. All ETEC challenged pigs were confirmed to be genetically susceptible to F18 ETEC. Pigs had free access to feed and water throughout the 14-d trial. Pig BW and feed intake were recorded on dpi -7, 0, and 7 or 8. Fecal swabs were collected on dpi -7, 0, 1, 2, 3, 5, and 7 or 8 to evaluate hemolytic E. coli shedding. Fecal score was visually ranked daily postchallenge to evaluate diarrhea incidence. Blood samples were collected on dpi -1, 3, and 7 or 8 at necropsy and intestinal tissues were collected at necropsy. Pigs on PC had lower dpi 1 to 7 ADG and ADFI than those on NC (P < 0.05). Compared with PC pigs, SF+ pigs had greater ADG during both pre- and postchallenge period (P < 0.05). The IF- increased postchallenge diarrhea incidence compared with PC (P < 0.05). Pigs on SF- had lower ileal E. coli attachment than PC (P < 0.05). The SF+ reduced haptoglobin and IF+ reduced C-reactive protein on dpi 3 compared with PC (P < 0.05). Compared with PC pigs, SF+ pigs tended to have lower ileal tumor necrosis factor alpha and greater ileal occludin (OCLN) mRNA (P < 0.10) and had greater (P < 0.05) colonic OCLN mRNA levels. Collectively, IF- increased incidence of diarrhea and fecal E. coli shedding compared with PC. The SF+ pigs had improved growth compared with PC pigs, likely due in part to a reduction in inflammatory intermediates.


Assuntos
Ração Animal/análise , Diarreia/veterinária , Fibras na Dieta/metabolismo , Escherichia coli Enterotoxigênica/fisiologia , Glicosídeo Hidrolases/metabolismo , Animais , Diarreia/metabolismo , Dieta/veterinária , Infecções por Escherichia coli/metabolismo , Fezes/microbiologia , Fermentação , Glicosídeo Hidrolases/genética , Íleo/metabolismo , Intestinos/microbiologia , Soja , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Desmame , Zea mays
12.
J Anim Sci ; 97(1): 257-268, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335136

RESUMO

Brachyspira hyodysenteriae (Bhyo) induces mucohemorrhagic diarrhea in pigs and is an economically significant disease worldwide. Our objectives were to determine the impact of Bhyo on apparent total tract digestibility (ATTD), ileal digestibility (AID), and ileal basal endogenous losses (BEL) in grower pigs. In addition, we assessed the effect of Bhyo on hindgut disappearance of DM, N, and GE. Thirty-two Bhyo negative gilts (38.6 ± 0.70 kg BW) were fitted with a T-cannula in the distal ileum and individually penned. In replicates 1 and 2, pigs were fed a complete diet (7 Bhyo-, 10 Bhyo+ pigs) or nitrogen-free diet (NFD; 4 Bhyo-, 11 Bhyo+ pigs), respectively. Across multiple rooms, the 21 Bhyo+ pigs (62.6 ± 1.39 kg BW) were inoculated with Bhyo on day post inoculation (dpi) 0, and the 11 Bhyo- pigs were sham inoculated. Feces were collected from 9 to 11 dpi and ileal digesta collected from 12 to 13 dpi. All pigs were euthanized at 14 to 15 dpi and intestinal tract pathology assessed. Within the complete diet and NFD treatments, data were analyzed to determine pathogen effects. All Bhyo- pigs remained Bhyo negative, and 5 Bhyo+ pigs in each replicate were confirmed Bhyo positive within 9 dpi. Infection with Bhyo reduced ATTD of DM, N, and GE and increased AID of Gly (P < 0.05). No other AA AID differences were observed. Only BEL of Pro was reduced (P < 0.05) while Arg, Trp, and Gly tended (P < 0.10) to be reduced in Bhyo+ pigs. When calculated from AID and BEL, Bhyo infection reduced standardized ileal digestibility (SID) of N, Arg, Lys, Ala, Gly, Pro, and Ser (P < 0.05) and tended to reduce Thr SID (P = 0.09). In the hindgut of Bhyo+ pigs, there was generally an appearance of nutrients rather than disappearance. In Bhyo+ pigs fed a complete diet, hindgut appearance of N and GE were increased (P < 0.05) by 58 and nine-fold, respectively, and DM tended to be increased two-fold (P = 0.06). Similarly, in NFD fed pigs, hindgut appearance of N and GE was increased by 172% and 162%, respectively, although high variability led to no significance. Altogether, Bhyo infection decreases ATTD but has minimal impact on AID of AA, when corrected for BEL, SID of N, Arg, Lys and some nonessential AA are specifically reduced. Unexpectedly, BEL of several AA involved in mucin production were unaffected by Bhyo infection. This may suggest an increased need for specific AA and energy during a Bhyo challenge.


Assuntos
Ração Animal/análise , Brachyspira hyodysenteriae , Dieta/veterinária , Infecções por Bactérias Gram-Negativas/veterinária , Suínos/fisiologia , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Digestão/efeitos dos fármacos , Metabolismo Energético , Fezes/química , Trato Gastrointestinal/metabolismo , Íleo/metabolismo , Masculino
13.
J Anim Sci ; 97(3): 1242-1253, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590571

RESUMO

Although the impact of carbohydrases on performance and nutrient utilization has been well studied, their effects on immune status and intestinal microbiota are less known in pigs. This study aimed to evaluate the impact of xylanase (X) and a carbohydrase enzyme blend (EB; cellulase, ß-glucanase, and xylanase) on the immune profile of the intestine and peripheral system as well as intestinal microbes and microbial metabolites of weaned pigs fed higher fiber diets. Pigs (n = 460; 6.43 ± 0.06 kg BW; F25 × 6.0 Genetiporc) were blocked by initial BW. Pens (n = 48; 12 per treatment; 9 or 10 pigs per pen) were randomly assigned to 1 of 4 dietary treatments, including a higher fiber control diet (CON) and the CON supplemented with 0.01% X, 0.01% EB, or both enzymes (X + EB), arranged in a 2 × 2 factorial. The diets were based on corn, soybean meal, corn distillers dried grains with solubles, and wheat middlings. After 7-d adaptation to the environment, pigs were fed experimental diets ad libitum for 28 d. Blood samples were collected from the same pig within each pen on days 0, 7, 14, and 28. Intestinal tissues and digesta were collected on day 28. Bacteria 16S rRNA gene copy numbers were quantified using qPCR. The mRNA levels of colonic IL-17, occludin (OCLN), and claudin 3 (CLDN3) were greater in pigs fed diets with X + EB, but not X or EB, compared with those fed CON (P < 0.05). The EB in the diet reduced plasma IL-8 over the 28-d trial compared with diets without EB (P < 0.05). There was an X × EB interaction on plasma tumor necrosis factor α and IL-1ß (P < 0.05); their levels were decreased when X and EB were added together, but not individually, compared with CON. The EB decreased cecal propionate, butyrate, and total volatile fatty acids (P < 0.05). Pigs fed X had lower ileal Lactobacillus and greater ileal and cecal Enterobacteriaceae compared with those fed unsupplemented diets (P < 0.05). The EB decreased Lactobacillus (P < 0.05) and tended to decrease (P = 0.065) Enterobacteriaceae in the colon compared with diets without EB. In conclusion, the addition of X and EB together decreased systemic markers of immune activation, potentially diverting energy and nutrients towards growth. The EB reduced colonic Lactobacillus and cecal total volatile fatty acids, probably due to improved prececal fiber and starch degradation and thus reduced substrate availability in the large intestine. These data corroborated previously observed enhanced growth in pigs fed EB-supplemented diets.


Assuntos
Bactérias/crescimento & desenvolvimento , Suplementos Nutricionais , Glicosídeo Hidrolases/farmacologia , Suínos/imunologia , Ração Animal , Animais , Citocinas/sangue , Dieta/veterinária , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Íleo/imunologia , Íleo/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillus/crescimento & desenvolvimento , Distribuição Aleatória , Soja , Suínos/genética , Suínos/microbiologia , Desmame , Zea mays
14.
J Anim Sci ; 96(12): 5233-5243, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30299467

RESUMO

The objective of this study was to evaluate the effects of dietary xylanase (X) and a carbohydrase enzyme blend (EB: cellulase, ß-glucanase, and xylanase) on nutrient digestibility, intestinal barrier integrity, inflammatory status, and growth performance in weaned piglets fed higher fiber diets. A total of 460 pigs (6.43 ± 0.06 kg BW; F25 × 6.0 Genetiporc) were blocked by initial BW and pens (n = 12 per treatment) were randomly assigned to 1 of 4 dietary treatments. The diets included a higher fiber unsupplemented control diet (CON) and the CON supplemented with 0.01% X, 0.01% EB, or both enzymes, arranged in a 2 × 2 factorial. The diets were based on corn, soybean meal, corn distillers dried grains with solubles (DDGS), and wheat middlings. Pigs had 7 d to adapt to the environment and consumed the same commercial diet. Pigs were fed the experimental diets for 28 d with free access to feed and water. Body weight and feed disappearance were recorded weekly. One pig with BW closest to the pen average from each pen was selected and moved to metabolism crates on day 16 and intragastric gavaged a solution of lactulose and mannitol on day 22 followed by 12-h urine collection. Feces were collected from day 23 to 25. Intestinal tissues and mucosal scrapings were collected on day 28. Data were analyzed using PROC MIXED of SAS (9.4). Xylanase, EB, and their interaction were fixed effects and block was a random effect. The EB, but not X, increased pig BW and improved ADG over 28 d (P < 0.05). Neither carbohydrase impacted ADFI, G:F, or apparent total tract digestibility (ATTD) of DM, GE, or CP. The EB improved ATTD of ADF (32.45 vs. 26.57%; P < 0.01), but had no effect on NDF. Unexpectedly, X reduced ATTD of NDF and ADF (P < 0.01). The EB reduced urinary lactulose:mannitol and increased ileal claudin-3 mRNA abundance (P < 0.05), indicating improved small intestinal barrier integrity. There was a X × EB interaction on ileal secretory immunoglobulin A (sIgA) concentration (P < 0.05); in the absence of X, EB decreased sIgA compared to CON, but this effect disappeared in the presence of X. The EB also reduced ileal IL-22 mRNA abundance (P < 0.05), probably indicating decreased immune activation. In conclusion, EB but not X enhanced growth rate of weaned pigs fed higher fiber diets, which may be partly explained by the improved small intestinal barrier integrity and reduced immune activation, rather than improvement in nutrient digestibility.


Assuntos
Ração Animal/análise , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Glicosídeo Hidrolases/farmacologia , Suínos/fisiologia , Animais , Dieta/veterinária , Digestão , Fezes/química , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Masculino , Distribuição Aleatória , Soja , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Zea mays
15.
J Anim Sci ; 96(8): 3196-3207, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29860328

RESUMO

Respiratory and enteric pathogens such as Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (LI) reduce lean accretion and feed efficiency (FE) in growing pigs. However, the metabolic mechanism by which this occurs is still unknown. Therefore, the primary aim of this study was to examine the metabolic adaptation of pigs presented with a dual Mh and LI challenge (MhLI). A secondary objective was to examine if selection for high FE, modeled by selection for low residual feed intake (RFI), alters molecular response to disease. Using a 2 × 2 factorial design, 6 littermate pairs from a high RFI (HRFI) and 6 littermate pairs from a low RFI (LRFI) line (barrows, 66 ± 2 kg BW) were selected, with 1 pig from each pair assigned to individual pens in either the challenge or the nonchallenge (control) rooms (n = 6 barrows per line/challenge). On days post inoculation (dpi) 0, MhLI pigs were inoculated intragastrically with LI and intratracheally with Mh. Pig and feeder weights were recorded at dpi 0, 7, 14, and 21. On dpi 21, pigs were euthanized and tissues and blood were collected. Markers of oxidative stress, skeletal muscle metabolism and proteolysis, and liver gluconeogenesis were evaluated to determine the effects of MhLI, RFI line, and their interaction. The interaction of line and challenge was not significant (P > 0.05) for any measure. Overall, MhLI pigs had lower ADG (38%, P < 0.001), ADFI (25%, P < 0.001), and G:F (19%, P = 0.012) compared with controls. As expected, LRFI pigs had lower ADFI (P = 0.028) for the same ADG, giving them greater G:F (P = 0.021) than HRFI pigs. Challenged pigs had greater reactive oxygen species (ROS) production in the LM and liver (P < 0.10) but did not have greater skeletal muscle proteolysis. Liver gluconeogenesis was also not upregulated (P > 0.05) due to MhLI. These results provide further evidence that selection for LRFI does not negatively affect response to disease. In addition, these results suggest that postabsorptive metabolic functions are altered due to MhLI challenge. The MhLI challenge induced mitochondrial dysfunction, evident by greater ROS production, and caused pigs to favor glycolytic energy generation. However, skeletal muscle proteolysis and liver gluconeogenesis were not upregulated during MhLI challenge. These data suggest that during mild disease stress, pigs can meet energy demands without reliance on nutrient mobilization and gluconeogenesis.


Assuntos
Ração Animal/análise , Lawsonia (Bactéria)/fisiologia , Mycoplasma hyopneumoniae/fisiologia , Suínos/metabolismo , Animais , Ingestão de Alimentos , Metabolismo Energético , Gluconeogênese , Interações Hospedeiro-Patógeno , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Estresse Oxidativo , Proteólise , Distribuição Aleatória , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
16.
J Therm Biol ; 72: 73-80, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29496018

RESUMO

Prolonged environment-induced hyperthermia causes morbidities and mortality in humans and animals and appears to cause organ-specific injury and dysfunction. We have previously determined autophagic dysfunction and apoptotic signaling in oxidative skeletal muscle following prolonged hyperthermia. The aim of this investigation was to extend our knowledge regarding the early chronology of heat stress-mediated apoptotic and autophagic signaling in oxidative skeletal muscle. We hypothesized that 2, 4, and 6 h of hyperthermia would increase apoptosis and autophagy in oxidative skeletal muscle compared to thermoneutral (TN) conditions. Pigs were assigned to four groups (n = 8/group) and exposed to environmental heat stress (37 °C) for 0, 2, 4, or 6 h. Immediately following environmental exposure animals were euthanized and the red portion of the semitendinosus was collected. Markers of apoptotic signaling were increased following 2 h of heating but returned to baseline thereafter, while caspase 3 activity remained elevated 2-3 fold (p < .05) throughout the hyperthermic period. Heat stress increased (p < .05) markers of autophagic activation, and nucleation as well as autophagosome formation and degradation linearly throughout the heating intervention. In addition, 6 h of hyperthermia increased (p < .05) markers of mitophagy. These data suggest that apoptotic signaling precedes increased autophagy during acute heat stress in oxidative skeletal muscle.


Assuntos
Apoptose , Autofagia , Febre/metabolismo , Resposta ao Choque Térmico , Músculo Esquelético/metabolismo , Estresse Oxidativo , Animais , Temperatura Alta , Transdução de Sinais , Sus scrofa
17.
J Anim Sci ; 96(5): 1846-1859, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29534187

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant disease in the swine industry, and increasing soybean meal (SBM) consumption during this disease challenge may improve performance. Our objectives were to determine the impact of SBM level on apparent total tract (ATTD) and ileal (AID) digestibility during PRRSV infection and to determine ileal basal endogenous losses (BEL) during PRRSV infection. Forty PRRSV negative gilts were fitted with a T-cannula in the distal ileum. Treatments were arranged in a 2 × 2 factorial with high and low SBM (HSBM, 29% vs. LSBM, 10%), with and without PRRSV (n = 6/treatment). The remaining pigs (n = 8/challenge status) were fed a N-free diet. Chromic oxide was used as an indigestible marker. On day post inoculation (dpi) 0, at 47.7 ± 0.57 kg BW, 20 pigs were inoculated with live PRRSV; 20 control pigs were sham inoculated. Infection was confirmed by serum PCR. Feces were collected at dpi 5 to 6 and dpi 16 to 17, and ileal digesta collected at dpi 7 to 8 and dpi 18 to 19. Feed, feces, and digesta were analyzed for DM, N, and GE. Digesta and feed were analyzed for AA. Data were analyzed in a 2 × 2 + 2 factorial design to determine main effects of diet and PRRSV and their interaction. Data from N-free fed pigs were analyzed separately to determine BEL and hindgut disappearance due to PRRSV infection. All control pigs remained PRRSV negative. There were no interactions for AID of AA; however, HSBM reduced DM, GE, Lys, and Met AID and increased Arg and Gly AID during both collection periods (P < 0.05). At dpi 7 to 8 only, PRRSV reduced DM and GE AID (P < 0.05). At 7 to 8 dpi, BEL of Arg, Ala, and Pro were reduced (P < 0.05) due to PRRSV by 64%, 39%, and 94%, respectively. At dpi 18 to 19, BEL of Thr tended (P = 0.06) to be increased in PRRSV-infected pigs; however, no other differences were observed. Pigs fed LSBM had increased Lys, Met, Thr, Trp, and Pro standardized ileal digestibility (SID), primarily at 7 to 8 dpi. At 7 to 8 dpi, PRRSV reduced Arg, Gly, and Pro SID (P < 0.01), and SID Pro continued to be reduced by 17% at dpi 18 to 19. Compared with HSBM pigs, LSBM reduced hindgut disappearance of DM and GE at dpi 5 to 8 and dpi 16 to 19, while N disappearance was reduced at dpi 5 to 8. There were no differences between control and PRRSV N-free fed pigs. Altogether, SBM inclusion impacts SID of AA and hindgut disappearance of nutrients, regardless of PRRSV. In contrast, there is minimal impact of PRRSV on BEL, and therefore, SID of most AA are not different.


Assuntos
Aminoácidos/metabolismo , Ração Animal/análise , Anticorpos Antivirais/sangue , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Soja , Animais , Dieta/veterinária , Digestão , Fezes/química , Feminino , Íleo/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Viremia/veterinária
18.
J Anim Sci ; 96(4): 1375-1387, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29474563

RESUMO

Heat stress (HS) and immune challenges negatively impact nutrient allocation and metabolism in swine, especially due to elevated heat load. In order to assess the effects of HS during Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection on metabolism, 9-wk old crossbred barrows were individually housed, fed ad libitum, divided into four treatments: thermo-neutral (TN), thermo-neutral PRRSV infected (TP), HS, and HS PRRSV infected (HP), and subjected to two experimental phases. Phase 1 occurred in TN conditions (22 °C) where half the animals were infected with PRRS virus (n = 12), while the other half (n = 11) remained uninfected. Phase 2 began, after 10 d with half of the uninfected (n = 6) and infected groups (n = 6) transported to heated rooms (35 °C) for 3 d of continuous heat, while the rest remained in TN conditions. Blood samples were collected prior to each phase and at trial completion before sacrifice. PPRS viral load indicated only infected animals were infected. Individual rectal temperature (Tr), respiration rates (RR), and feed intakes (FI) were determined daily. Pigs exposed to either challenge had an increased Tr, (P < 0.0001) whereas RR increased (P < 0.0001) with HS, compared to TN. ADG and BW decreased with challenges compared to TN, with the greatest loss to HP pigs. Markers of muscle degradation such as creatine kinase, creatinine, and urea nitrogen were elevated during challenges. Blood glucose levels tended to decrease in HS pigs. HS tended to decrease white blood cell (WBC) and lymphocytes and increase monocytes and eosinophils during HS. However, neutrophils were significantly increased (P < 0.01) during HP. Metabolic flexibility tended to decrease in PRRS infected pigs as well as HS pigs. Fatty acid oxidation measured by CO2 production decreased in HP pigs. Taken together, these data demonstrate the additive effects of the HP challenge compared to either PRRSV or HS alone.


Assuntos
Resposta ao Choque Térmico/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/metabolismo , Animais , Temperatura Alta , Masculino , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , RNA Mensageiro/genética , RNA Viral/genética , Espécies Reativas de Oxigênio/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Carga Viral
19.
J Anim Sci ; 96(1): 154-167, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432553

RESUMO

Heat-related complications continue to be a major health concern for humans and animals and lead to potentially life-threatening conditions. Heat stress (HS) alters metabolic parameters and may alter glucose metabolism and insulin signaling. Therefore, the purpose of this investigation was to determine the extent to which 12 h of HS-altered energetic metabolism in oxidative skeletal muscle. To address this, crossbred gilts (n = 8/group) were assigned to one of three environmental treatments for 12 h: thermoneutral (TN; 21 °C), HS (37 °C), or pair-fed to HS counterparts but housed in TN conditions (PFTN). Following treatment, animals were euthanized and the semitendinosus red (STR) was recovered. Despite increased relative protein abundance of the insulin receptor, insulin receptor substrate (IRS1) phosphorylation was increased (P = 0.0005) at S307, an inhibitory site, and phosphorylated protein kinase B (AKT) (S473) was decreased (P = 0.03) likely serving to impair insulin signaling following 12 h of HS. Further, HS increased phosphorylated protein kinase C (PKC) ζ/λ (P = 0.02) and phosphorylated PKCδ/θ protein abundance (P = 0.02), which are known to regulate inhibitory serine phosphorylation of IRS1 (S307). Sarcolemmal glucose transporter 4 (Glut4) was decreased (P = 0.04) in the membrane fraction of HS skeletal muscle suggesting diminished glucose uptake capacity. HS-mediated increases (P = 0.04) in mechanistic target of rapamycin (mTOR) were not accompanied by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). HS decreased (P = 0.0006) glycogen synthase (GS) and increased (P = 0.02) phosphorylated GS suggesting impaired glycogen synthesis. In addition, HS altered fatty acid metabolic signaling by increasing (P = 0.02) Acetyl-CoA carboxylase (ACC), decreasing (P = 0.005) phosphorylated ATP-citrate lyase (pATPCL) and fatty acid synthase (P = 0.01) (FAS). These data suggest that 12 h of HS blunted insulin signaling, decreased protein synthesis, and altered glycogen and fatty acid metabolism.


Assuntos
Metabolismo Energético , Insulina/metabolismo , Transdução de Sinais , Estresse Fisiológico , Suínos/fisiologia , Animais , Ácidos Graxos/metabolismo , Feminino , Glicogênio/metabolismo , Temperatura Alta/efeitos adversos , Isoenzimas/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
20.
J Anim Sci ; 96(2): 462-472, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29385478

RESUMO

Feed efficiency (FE) is a valuable trait, yet how genetic selection for enhanced FE affects other processes such as response to disease is unknown. Disease from endemic respiratory and enteric pathogens such as Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (LI) are common in swine production. Therefore, the aim of this study was to examine if pigs selected for high vs. low FE based on residual feed intake (RFI) respond differently to a dual respiratory and enteric challenge. Pigs selected for low RFI (LRFI, high FE) are considered more FE compared to their high RFI (HRFI, low FE) selected counterparts. Using a 2 × 2 factorial design, 25 littermate pairs from the HRFI and 25 littermate pairs from the LRFI line (barrows, 50 ± 7 kg BW) were selected, with one pig from each pair assigned to individual pens in either the challenge or the nonchallenge (control) rooms (n = 25 barrows/line/challenge). On days post inoculation (dpi) 0, the challenged pigs were inoculated with LI and Mh (MhLI). Feed intake, BW, fecal swabs, and serum samples were collected and recorded weekly for 42 d. On dpi -2 and 47, 14 littermate pairs (n = 7 barrows/line/challenge) were utilized for initial and final body composition scans using dual-energy X-ray absorptiometry to calculate longitudinal whole body tissue accretion rates for lean, protein, fat, and bone mineral content. Serum antibody levels and fecal shedding of LI were used to confirm infection. Control pigs remained negative by all measures during the 6-wk trial and MhLI inoculated pigs were confirmed positive via serological antibody responses by dpi 14 for LI and Mh. There were no interactions between RFI line and challenge status for any overall performance parameter (P > 0.05). The 6-wk MhLI challenge resulted in a 17% reduction in ADG, a 12% reduction in ADFI, and a 7% reduction in G:F vs. Controls (P < 0.05). In addition, compared to the Control pigs, MhLI challenge reduced lean, protein, and lipid accretion rates by 16% (P < 0.05). Genetic selection for high FE resulted in decreased ADFI and increased G:F (P < 0.01), but did not impact ADG or tissue accretion vs. low FE pigs. Collectively, these results demonstrate that a dual enteric and respiratory pathogen challenge reduced ADG, ADFI, G:F, and tissue accretion in growing pigs. Further, there was no evidence that selection for enhanced FE based on RFI index affects response to disease.


Assuntos
Infecções por Desulfovibrionaceae/veterinária , Lawsonia (Bactéria) , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática/patologia , Doenças dos Suínos/microbiologia , Animais , Composição Corporal/fisiologia , Infecções por Desulfovibrionaceae/patologia , Metabolismo Energético/genética , Feminino , Masculino , Seleção Genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA