Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
HGG Adv ; 5(2): 100279, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38389303

RESUMO

We designed a massively parallel reporter assay (MPRA) in an Epstein-Barr virus transformed B cell line to directly characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate regulatory activity in an allele-dependent manner. Our study demonstrates that hQTLs, as a group, are more likely to modulate regulatory activity in an MPRA compared with other variant classes tested, including a set of eQTLs previously shown to interact with hQTLs and tested AI risk variants. In addition, we nominate 17 variants (including 11 previously unreported) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies in primary and immortalized B cells. Thus, we uncover important insights into the mechanistic relationships among genotype, epigenetics, and gene expression in SLE and AI disease phenotypes.


Assuntos
Infecções por Vírus Epstein-Barr , Lúpus Eritematoso Sistêmico , Humanos , Locos de Características Quantitativas/genética , Histonas/genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lúpus Eritematoso Sistêmico/genética
2.
Anticancer Res ; 43(12): 5299-5310, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030164

RESUMO

BACKGROUND/AIM: Activin, a member of the TGF-ß super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS: Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS: IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit ßA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION: Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.


Assuntos
Ativinas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Ativinas/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica
3.
Nat Genet ; 55(12): 2025-2026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036786
4.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745336

RESUMO

Background/Purpose: Knowledge of the 3D genome is essential to elucidate genetic mechanisms driving autoimmune diseases. The 3D genome is distinct for each cell type, and it is uncertain whether cell lines faithfully recapitulate the 3D architecture of primary human cells or whether developmental aspects of the pediatric immune system require use of pediatric samples. We undertook a systematic analysis of B cells and B cell lines to compare 3D genomic features encompassing risk loci for juvenile idiopathic arthritis (JIA), systemic lupus (SLE), and type 1 diabetes (T1D). Methods: We isolated B cells from healthy individuals, ages 9-17. HiChIP was performed using CTCF antibody, and CTCF peaks were identified. CTCF loops within the pediatric were compared to three datasets: 1) self-called CTCF consensus peaks called within the pediatric samples, 2) ENCODE's publicly available GM12878 CTCF ChIP-seq peaks, and 3) ENCODE's primary B cell CTCF ChIPseq peaks from two adult females. Differential looping was assessed within the pediatric samples and each of the three peak datasets. Results: The number of consensus peaks called in the pediatric samples was similar to that identified in ENCODE's GM12878 and primary B cell datasets. We observed <1% of loops that demonstrated significantly differential looping between peaks called within the pediatric samples themselves and when called using ENCODE GM12878 peaks . Significant looping differences were even less when comparing loops of the pediatric called peaks to those of the ENCODE primary B cell peaks. When querying loops found in juvenile idiopathic arthritis, type 1 diabetes, or systemic lupus erythematosus risk haplotypes, we observed significant differences in only 2.2%, 1.0%, and 1.3% loops, respectively, when comparing peaks called within the pediatric samples and ENCODE GM12878 dataset. The differences were even less apparent when comparing loops called with the pediatric vs ENCODE adult primary B cell peak datasets.The 3D chromatin architecture in B cells is similar across pediatric, adult, and EBVtransformed cell lines. This conservation of 3D structure includes regions encompassing autoimmune risk haplotypes. Conclusion: Thus, even for pediatric autoimmune diseases, publicly available adult B cell and cell line datasets may be sufficient for assessing effects exerted in the 3D genomic space.

5.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645944

RESUMO

Objective: To systematically characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate gene expression in an allele dependent manner. Methods: We designed a massively parallel reporter assay (MPRA) containing ~32K variants and transfected it into an Epstein-Barr virus transformed B cell line generated from an SLE case. Results: Our study expands our understanding of hQTLs, illustrating that epigenetic QTLs are more likely to contribute to functional mechanisms than eQTLs and other variant types, and a large proportion of hQTLs overlap transcription start sites (TSS) of noncoding RNAs. In addition, we nominate 17 variants (including 11 novel) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies primary and immortalized B cells. Conclusion: We uncover important insights into the mechanistic relationships between genotype, epigenetics, gene expression, and SLE and AI disease phenotypes.

7.
RMD Open ; 8(2)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36456101

RESUMO

OBJECTIVE: Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS: Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS: Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION: LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.


Assuntos
Doenças Autoimunes , RNA Longo não Codificante , Síndrome de Sjogren , Humanos , Interferons , RNA Longo não Codificante/genética , Calcineurina , Antivirais , Síndrome de Sjogren/genética , Autoanticorpos , Imunidade , Receptores de Antígenos de Linfócitos T
9.
Front Genet ; 13: 1011965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199584

RESUMO

TNFAIP3/A20 is a prominent autoimmune disease risk locus that is correlated with hypomorphic TNFAIP3 expression and exhibits complex chromatin architecture with over 30 predicted enhancers. This study aimed to functionally characterize an enhancer ∼55 kb upstream of the TNFAIP3 promoter marked by the systemic lupus erythematosus (SLE) risk haplotype index SNP, rs10499197. Allele effects of rs10499197, rs58905141, and rs9494868 were tested by EMSA and/or luciferase reporter assays in immune cell types. Co-immunoprecipitation, ChIP-qPCR, and 3C-qPCR were performed on patient-derived EBV B cells homozygous for the non-risk or SLE risk TNFAIP3 haplotype to assess haplotype-specific effects on transcription factor binding and chromatin regulation at the TNFAIP3 locus. This study found that the TNFAIP3 locus has a complex chromatin regulatory network that spans ∼1M bp from the promoter region of IL20RA to the 3' untranslated region of TNFAIP3. Functional dissection of the enhancer demonstrated co-dependency of the RelA/p65 and CEBPB binding motifs that, together, increase IL20RA and IFNGR1 expression and decreased TNFAIP3 expression in the context of the TNFAIP3 SLE risk haplotype through dynamic long-range interactions up- and downstream. Examination of SNPs in linkage disequilibrium (D' = 1.0) with rs10499197 identified rs9494868 as a functional SNP with risk allele-specific increase in nuclear factor binding and enhancer activation in vitro. In summary, this study demonstrates that SNPs carried on the ∼109 kb SLE risk haplotype facilitate hypermorphic IL20RA and IFNGR1 expression, while suppressing TNFAIP3 expression, adding to the mechanistic potency of this critically important locus in autoimmune disease pathology.

10.
Public Health Genomics ; : 1-9, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35998578

RESUMO

INTRODUCTION: Precision medicine research investigates the differences in individuals' genetics, environment, and lifestyle to tailor health prevention and treatment options as part of an emerging model of health care delivery. Advancing precision medicine research will require effective communication across a wide range of scientific and health care disciplines and with research participants who represent diverse segments of the population. METHODS: A multidisciplinary group convened over the course of a year and developed precision medicine research case examples to facilitate precision medicine research discussions with communities. RESULTS: A shared definition of precision medicine research as well as six case examples of precision medicine research involving genetic risk, pharmacogenetics, epigenetics, the microbiome, mobile health, and electronic health records were developed. DISCUSSION/CONCLUSION: The precision medicine research definition and case examples can be used as planning tools to establish a shared understanding of the scope of precision medicine research across multidisciplinary teams and with the diverse communities in which precision medicine research will take place. This shared understanding is vital for successful and equitable progress in precision medicine.

11.
Nat Commun ; 13(1): 4287, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896530

RESUMO

Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome de Sjogren , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Síndrome de Sjogren/genética
12.
ACR Open Rheumatol ; 4(9): 760-770, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708944

RESUMO

OBJECTIVE: To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS: Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS: Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION: An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.

13.
Front Immunol ; 13: 881332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720397

RESUMO

Objective: Higher 25-hydroxyvitamin D (25(OH)D) levels have been associated with reduced risk for autoimmune diseases and are influenced by vitamin D metabolism genes. We estimated genetically-determined vitamin D levels by calculating a genetic risk score (GRS) and investigated whether the vitamin D GRS was associated with the presence of autoantibodies related to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in those at increased risk for developing RA and SLE, respectively. Methods: In this cross-sectional study, we selected autoantibody positive (aAb+) and autoantibody negative (aAb-) individuals from the Studies of the Etiologies of Rheumatoid Arthritis (SERA), a cohort study of first-degree relatives (FDRs) of individuals with RA (189 RA aAb+, 181 RA aAb-), and the Lupus Family Registry and Repository (LFRR), a cohort study of FDRs of individuals with SLE (157 SLE aAb+, 185 SLE aAb-). Five SNPs known to be associated with serum 25(OH)D levels were analyzed individually as well as in a GRS: rs4588 (GC), rs12785878 (NADSYN1), rs10741657 (CYP2R1), rs6538691 (AMDHD1), and rs8018720 (SEC23A). Results: Both cohorts had similar demographic characteristics, with significantly older and a higher proportion of males in the aAb+ FDRs. The vitamin D GRS was inversely associated with RA aAb+ (OR = 0.85, 95% CI = 0.74-0.99), suggesting a possible protective factor for RA aAb positivity in FDRs of RA probands. The vitamin D GRS was not associated with SLE aAb+ in the LFRR (OR = 1.09, 95% CI = 0.94-1.27). The SEC23A SNP was associated with RA aAb+ in SERA (OR = 0.65, 95% CI = 0.43-0.99); this SNP was not associated with SLE aAb+ in LFRR (OR = 1.41, 95% CI = 0.90 - 2.19). Conclusion: Genes associated with vitamin D levels may play a protective role in the development of RA aAbs in FDRs of RA probands, perhaps through affecting lifelong vitamin D status. The GRS and the SEC23A SNP may be of interest for future investigation in pre-clinical RA. In contrast, these results do not support a similar association in SLE FDRs, suggesting other mechanisms involved in the relationship between vitamin D and SLE aAbs not assessed in this study.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Autoanticorpos , Estudos de Coortes , Estudos Transversais , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Masculino , Fatores de Risco , Vitamina D , Vitaminas
14.
Arthritis Rheumatol ; 74(1): 163-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279042

RESUMO

OBJECTIVE: Genetic variants spanning UBE2L3 are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme H7 (UbcH7), which facilitates activation of proinflammatory NF-κB signaling and susceptibility to autoimmune diseases. We undertook this study to delineate how genetic variants carried on the UBE2L3/YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression. METHODS: We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture with quantitative polymerase chain reaction (3C-qPCR), chromatin immunoprecipitation (ChIP)-qPCR, and small interfering RNA (siRNA) knockdown assays were performed on patient-derived Epstein-Barr virus-transformed B cells homozygous for the UBE2L3/YDJC nonrisk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region. RESULTS: Of the 7 prioritized variants, 5 demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. High-throughput sequencing of chromosome conformation capture coupled with ChIP (HiChIP) and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and the downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3/YDJC risk haplotype, and correlated with the loss of CCCTC-binding factor (CTCF) and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the 2 promoters and reduced UBE2L3 expression. CONCLUSION: The UBE2L3/YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.


Assuntos
Doenças Autoimunes/genética , Fator de Ligação a CCCTC/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/fisiologia , Fator de Transcrição YY1/fisiologia , Regulação da Expressão Gênica , Variação Genética , Haplótipos , Humanos , Fatores de Risco
15.
Immunohorizons ; 5(10): 802-817, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663594

RESUMO

ARID3a is a DNA-binding protein important for normal hematopoiesis in mice and for in vitro lymphocyte development in human cultures. ARID3a knockout mice die in utero with defects in both early hematopoietic stem cell populations and erythropoiesis. Recent transcriptome analyses in human erythropoietic systems revealed increases in ARID3a transcripts implicating potential roles for ARID3a in human erythrocyte development. However, ARID3a transcript levels do not faithfully reflect protein levels in many cells, and the functions and requirements for ARID3a protein in those systems have not been explored. We used the erythroleukemic cell line K562 as a model to elucidate functions of ARID3a protein in early human erythropoiesis. ARID3a knockdown of hemin-stimulated K562 cells resulted in lack of fetal globin production and modifications in gene expression. Temporal RNA sequencing data link ARID3a expression with the important erythroid regulators Gata1, Gata2, and Klf1 Ablation of ARID3a using CRISPR-Cas9 further demonstrated it is required to maintain chromatin structures associated with erythropoietic differentiation potential. These data demonstrate that the ARID3a protein is required for early erythropoietic events and provide evidence for the requirement of ARID3a functions for proper maintenance of appropriate chromatin structures.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Eritropoese/genética , Fatores de Transcrição/deficiência , Sistemas CRISPR-Cas/genética , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Globulinas Fetais/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Células K562 , RNA-Seq , Fatores de Transcrição/genética
16.
Sci Rep ; 11(1): 4011, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597588

RESUMO

Juvenile idiopathic arthritis (JIA) is one of the most common chronic diseases in children. While clinical outcomes for patients with juvenile JIA have improved, the underlying biology of the disease and mechanisms underlying therapeutic response/non-response are poorly understood. We have shown that active JIA is associated with distinct transcriptional abnormalities, and that the attainment of remission is associated with reorganization of transcriptional networks. In this study, we used a multi-omics approach to identify mechanisms driving the transcriptional abnormalities in peripheral blood CD4+ T cells of children with active JIA. We demonstrate that active JIA is associated with alterations in CD4+ T cell chromatin, as assessed by ATACseq studies. However, 3D chromatin architecture, assessed by HiChIP and simultaneous mapping of CTCF anchors of chromatin loops, reveals that normal 3D chromatin architecture is largely preserved. Overlapping CTCF binding, ATACseq, and RNAseq data with known JIA genetic risk loci demonstrated the presence of genetic influences on the observed transcriptional abnormalities and identified candidate target genes. These studies demonstrate the utility of multi-omics approaches for unraveling important questions regarding the pathobiology of autoimmune diseases.


Assuntos
Artrite Juvenil/imunologia , Linfócitos T CD4-Positivos/metabolismo , Cromatina/genética , Adolescente , Artrite Juvenil/genética , Linfócitos T CD4-Positivos/fisiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatina/metabolismo , Epigênese Genética/genética , Epigenômica , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Masculino , New York , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
17.
Genome Biol ; 21(1): 281, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213505

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease characterized by the development of anti-nuclear antibodies. Susceptibility to SLE is multifactorial, with a combination of genetic and environmental risk factors contributing to disease development. Like other polygenic diseases, a significant proportion of estimated SLE heritability is not accounted for by common disease alleles analyzed by SNP array-based GWASs. Death-associated protein 1 (DAP1) was implicated as a candidate gene in a previous familial linkage study of SLE and rheumatoid arthritis, but the association has not been explored further. RESULTS: We perform deep sequencing across the DAP1 genomic segment in 2032 SLE patients, and healthy controls, and discover a low-frequency functional haplotype strongly associated with SLE risk in multiple ethnicities. We find multiple cis-eQTLs embedded in a risk haplotype that progressively downregulates DAP1 transcription in immune cells. Decreased DAP1 transcription results in reduced DAP1 protein in peripheral blood mononuclear cells, monocytes, and lymphoblastoid cell lines, leading to enhanced autophagic flux in immune cells expressing the DAP1 risk haplotype. Patients with DAP1 risk allele exhibit significantly higher autoantibody titers and altered expression of the immune system, autophagy, and apoptosis pathway transcripts, indicating that the DAP1 risk allele mediates enhanced autophagy, leading to the survival of autoreactive lymphocytes and increased autoantibody. CONCLUSIONS: We demonstrate how targeted sequencing captures low-frequency functional risk alleles that are missed by SNP array-based studies. SLE patients with the DAP1 genotype have distinct autoantibody and transcription profiles, supporting the dissection of SLE heterogeneity by genetic analysis.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autoimunidade/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Lúpus Eritematoso Sistêmico/genética , Alelos , Artrite Reumatoide , Autofagia , Células Dendríticas , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Leucócitos Mononucleares , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
18.
Transl Psychiatry ; 10(1): 282, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788574

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Front Genet ; 11: 784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774345

RESUMO

Nearest-neighbor Projected-Distance Regression (NPDR) is a feature selection technique that uses nearest-neighbors in high dimensional data to detect complex multivariate effects including epistasis. NPDR uses a regression formalism that allows statistical significance testing and efficient control for multiple testing. In addition, the regression formalism provides a mechanism for NPDR to adjust for population structure, which we apply to a GWAS of systemic lupus erythematosus (SLE). We also test NPDR on benchmark simulated genetic variant data with epistatic effects, main effects, imbalanced data for case-control design and continuous outcomes. NPDR identifies potential interactions in an epistasis network that influences the SLE disorder.

20.
Arthritis Rheumatol ; 72(5): 780-790, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804013

RESUMO

OBJECTIVE: Genetic variants in the region of tumor necrosis factor-induced protein 3-interacting protein 1 (TNIP1) are associated with autoimmune disease and reduced TNIP1 gene expression. The aim of this study was to define the functional genetic mechanisms driving TNIP1 hypomorphic expression imparted by the systemic lupus erythematosus-associated TNIP1 H1 risk haplotype. METHODS: Dual luciferase expression and electrophoretic mobility shift assays were used to evaluate the allelic effects of 11 risk variants on enhancer function and nuclear protein binding in immune cell line models (Epstein-Barr virus [EBV]-transformed human B cells, Jurkat cells, and THP-1 cells), left in a resting state or stimulated with phorbol 12-myristate 13-acetate/ionomycin. HiChIP was used to define the regulatory 3-dimensional (3-D) chromatin network of the TNIP1 haplotype by detecting in situ long-range DNA contacts associated with H3K27ac-marked chromatin in EBV B cells. Then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression of genes within the 3-D chromatin network. RESULTS: Bioinformatics analyses of 50 single-nucleotide polymorphisms on the TNIP1 H1 risk haplotype identified 11 non-protein-coding variants with a high likelihood of influencing TNIP1 gene expression. Eight variants in EBV B cells, 5 in THP-1 cells, and 2 in Jurkat cells exhibited various allelic effects on enhancer activation, resulting in a cumulative suppressive effect on TNIP1 expression (net effect of risk variants -7.14 fold, -6.80 fold, and -2.44 fold, respectively; n > 3). Specifically, in EBV B cells, only 2 variants (rs10057690 and rs13180950) exhibited allele-specific loss of both enhancer activity and nuclear protein binding (each P < 0.01 relative to nonrisk alleles). In contrast, the rs10036748 risk allele reduced binding affinities of the transcriptional repressors basic helix-loop-helix family member 40/differentially expressed in chondrocytes 1 (bHLHe40/DEC1) (P < 0.05 relative to nonrisk alleles) and CREB-1 (P not significant) in EBV B cells, resulting in a gain of enhancer activity (P < 0.05). HiChIP and qRT-PCR analyses revealed that overall transcriptional repression of the TNIP1 haplotype extended to the neighboring genes DCTN4 and GMA2, both of which also showed decreased expression in the presence of the TNIP1 risk haplotype (P < 0.001 and P < 0.01, respectively, relative to the nonrisk haplotype); notably, it was found that these genes share a 3-D chromatin network. CONCLUSION: Hypomorphic TNIP1 expression results from the combined concordant and opposing effects of multiple risk variants carried on the TNIP1 risk haplotype, with the strongest regulatory effect in B lymphoid lineage cells. Furthermore, the TNIP1 risk haplotype effect extends to neighboring genes within a shared chromatin network.


Assuntos
Proteínas de Ligação a DNA/genética , Lúpus Eritematoso Sistêmico/genética , Linfócitos B , Cromatina , Expressão Gênica , Haplótipos , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...