Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Hum Mol Genet ; 29(21): 3516-3531, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33105479

RESUMO

Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.

2.
Brain ; 143(11): 3242-3261, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150406

RESUMO

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.

3.
Neurology ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219145

RESUMO

OBJECTIVES: To characterize muscle involvement and evaluate disease severity in patients with GNE myopathy using skeletal muscle MRI and proton magnetic resonance spectroscopy (1H-MRS). METHODS: Skeletal muscle imaging of the lower extremities was performed in 31 patients with genetically confirmed GNE myopathy, including T1-weighted and STIR images, T1 and T2 mapping and 1H-MRS. Measures evaluated included longitudinal relaxation time (T1), transverse relaxation time (T2), and 1H-MRS fat fraction (FF). Thigh muscle volume was correlated with relevant measures of strength, function, and patient-reported outcomes. RESULTS: The cohort was representative of a wide range of disease progression. Contractile thigh muscle volume ranged from 5.51% to 62.95%, and correlated with thigh strength (r = 0.91), the 6-minute walk test (r = 0.82), the adult myopathy assessment tool (r = 0.83), the activities-specific balance confidence scale (r = 0.65), and the inclusion body myositis functional rating scale (r = 0.62). Four stages of muscle involvement were distinguished by qualitative (T1W and STIR images) and quantitative methods: stage I) Unaffected muscle (T1 = 1,033 ± 74.2 ms, T2 = 40.0 ± 1.9 ms, FF = 7.4 ± 3.5%); Stage II) STIR hyperintense muscle with minimal or no fat infiltration (T1 = 1,305 ± 147 ms, T2 = 50.2 ± 3.5 ms, FF = 27.6 ± 12.7%); Stage III) Fat infiltration and STIR hyperintensity (T1 = 1,209 ± 348 ms, T2 = 73.3 ± 12.6 ms, FF = 57.5 ± 10.6%); and Stage IV) Complete fat replacement (T1 = 318 ± 39.9 ms, T2 = 114 ± 21.2 ms, FF = 85.6 ± 4.2%). 1H-MRS showed a significant decrease in intramyocellular lipid and trimethylamines (TMA) between stage I and II, suggesting altered muscle metabolism at early stages. CONCLUSION: MRI biomarkers can monitor muscle involvement and determine disease severity non-invasively in patients with GNE myopathy. CLINICALTRIALSGOV IDENTIFIER: NCT01417533.

4.
Genet Med ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33239752

RESUMO

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.

5.
JAMA Netw Open ; 3(10): e2019169, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119105

RESUMO

Importance: Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis affecting multiple organs and commonly caused by somatic pathogenic variants in BRAF V600E and mitogen-activated protein kinase genes. Clinical features of ECD result from histiocytic involvement of various tissues; while endocrine involvement in ECD occurs frequently, the prevalence of central or primary hypothyroidism has not been thoroughly investigated. Objective: To assess hypothalamus-pituitary-thyroid (HPT) dysfunction in patients with ECD. Design, Setting, and Participants: This cross-sectional study included 61 patients with ECD who were enrolled in a natural history study at a tertiary care center between January 2011 and December 2018. ECD was diagnosed on the basis of clinical, genetic, and histopathological features. Data were analyzed in March 2020. Exposure: Diagnosis of ECD. Main Outcomes and Measures: Main outcome was the prevalence of thyroid dysfunction in adults with ECD compared with community estimates. Patients underwent baseline evaluation with a thyroid function test, including thyrotropin, free thyroxine (fT4), and total thyroxine (T4), and sellar imaging with magnetic resonance imaging or computed tomography scan. The association of HPT dysfunction was assessed for differences in age, sex, body mass index, BRAF V600E status, high sensitivity C-reactive protein level, sellar imaging, and pituitary hormonal dysfunction. Results: A total of 61 patients with ECD (46 [75%] men; mean [SD] age, 54.3 [10.9] years) were evaluated. Seventeen patients (28%) had hypothyroidism requiring levothyroxine therapy. The prevalence of both central and primary hypothyroidism were higher than community estimates (central hypothyroidism: 9.8% vs 0.1%; odds ratio, 109.0; 95% CI, 37.4-260.6; P < .001; primary hypothyroidism: 18.0% vs 4.7%; OR, 4.4; 95% CI, 2.1-8.7; P < .001). Patients with hypothyroidism (both primary and central), compared with patients with euthyroidism, had higher body mass index (median [interquartile range] 31.4 [28.3-38.3] vs 26.7 [24.4-31.9]; P = .004) and a higher prevalence of panhypopituitarism (7 [47%] vs 3 [7%]; P < .001). Among patients with hypothyroidism, those with central hypothyroidism, compared with patients with primary hypothyroidism, had a lower mean (SD) body mass index (28.3 [2.6] vs 36.3 [5.9]; P = .007) and higher frequencies of abnormal sellar imaging (5 [83%] vs 3 [27%]; P = .050) and panhypopituitarism (5 [83%] vs 3 [27%]; P = .050). Conclusions and Relevance: In this cohort study, a higher prevalence of central and primary hypothyroidism was identified in patients with ECD compared with the community. There should be a low threshold for testing for hypothyroidism in patients with ECD, and treatment should follow standard guidelines.


Assuntos
Doença de Erdheim-Chester/epidemiologia , Hipotireoidismo/diagnóstico , Hipotireoidismo/epidemiologia , Adulto , Causalidade , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Doença de Erdheim-Chester/diagnóstico , Feminino , Humanos , Masculino , Prevalência , Testes de Função Tireóidea
6.
Nature ; 586(7831): 683-692, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116284

RESUMO

Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is, at 'The Forefront of Genomics'.


Assuntos
Pesquisa Biomédica/tendências , Genoma Humano/genética , Genômica/tendências , Saúde Pública/normas , Pesquisa Médica Translacional/tendências , Pesquisa Biomédica/economia , Genômica/economia , Humanos , National Human Genome Research Institute (U.S.)/economia , Mudança Social , Pesquisa Médica Translacional/economia , Estados Unidos
7.
Genet Med ; 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33005041

RESUMO

PURPOSE: Generalized arterial calcification of infancy (GACI), characterized by vascular calcifications that are often fatal shortly after birth, is usually caused by deficiency of ENPP1. A small fraction of GACI cases result from deficiency of ABCC6, a membrane transporter. The natural history of GACI survivors has not been established in a prospective fashion. METHODS: We performed deep phenotyping of 20 GACI survivors. RESULTS: Sixteen of 20 subjects presented with arterial calcifications, but only 5 had residual involvement at the time of evaluation. Individuals with ENPP1 deficiency either had hypophosphatemic rickets or were predicted to develop it by 14 years of age; 14/16 had elevated intact FGF23 levels (iFGF23). Blood phosphate levels correlated inversely with iFGF23. For ENPP1-deficient individuals, the lifetime risk of cervical spine fusion was 25%, that of hearing loss was 75%, and the main morbidity in adults was related to enthesis calcification. Four ENPP1-deficient individuals manifested classic skin or retinal findings of PXE. We estimated the minimal incidence of ENPP1 deficiency at ~1 in 200,000 pregnancies. CONCLUSION: GACI appears to be more common than previously thought, with an expanding spectrum of overlapping phenotypes. The relationships among decreased ENPP1, increased iFGF23, and rickets could inform future therapies.

8.
Am J Med Genet A ; 182(12): 3007-3013, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32990340

RESUMO

Chediak-Higashi disease is a rare disease caused by bi-allelic mutations in the lysosomal trafficking regulator gene, LYST. Individuals typically present in early childhood with partial oculocutaneous albinism, a bleeding diathesis, recurrent infections secondary to immune dysfunction, and risk of developing hemophagocytic lymphohistiocytosis (HLH). Without intervention, mortality is high in the first decade of life. However, some individuals with milder phenotypes have attenuated hematologic and immunologic presentations, and lower risk of HLH. Both classic and milder phenotypes develop progressive neurodegeneration in early adulthood. Here we present a remarkable patient diagnosed with Chediak-Higashi disease at age 67, many decades after the diagnosis is usually established. Diagnosis was suspected by observing the pathognomonic granules within leukocytes, and confirmed by identification of bi-allelic mutations in LYST, reduced LYST mRNA expression, enlarged lysosomes within fibroblasts, and decreased NK cell lytic activity. This case further expands the phenotype of Chediak-Higashi disease and highlights the need for increased awareness. Individuals with milder phenotypes may escape early diagnosis, but identification is important for close monitoring of potential complications, and to further our understanding of the function of LYST.

9.
Mol Genet Metab ; 131(1-2): 267-276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32919899

RESUMO

BACKGROUND AND OBJECTIVES: We have previously published the characteristics of kidney and liver disease in a cohort of 73 individuals with molecularly confirmed autosomal recessive polycystic kidney disease-congenital hepatic fibrosis, based upon cross-sectional data. Here, we present prospective data on the same cohort. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS: Comprehensive biochemical and imaging data on progression of kidney and liver disease in 60 of the 73 patients were prospectively collected at the NIH Clinical Center on multiple visits between 2003 and 2019. RESULTS AND CONCLUSIONS: Of the 73 patients, 23 received a renal allograft at an average age of 17.5 years and 10 underwent liver transplantation at an average age of 20.3 years. Patients who presented perinatally and those who had corticomedullary disease required kidney transplantation significantly earlier. The mean eGFR slope in patients with corticomedullary disease was -1.6 ml/min/1.73 m2/y, in comparison to -0.6 ml/min/1.73 m2/y in those with medullary disease. Kidney size remained the same over time and normalized to the upper limit of normal by 20-25 years of age. The extent of renal disease on ultrasound remained largely unchanged; no patient progressed from the "medullary" to the "corticomedullary" group. There was no correlation between eGFR slope and kidney size. The synthetic function of the liver remained largely intact even in patients with advanced portal hypertension. Based on spleen length/height ratio, two thirds of patients had portal hypertension which remained stable in 39% and worsened in 61%. Patients with portal hypertension had lower platelet counts and relatively higher levels of AST, GGT, direct bilirubin and ammonia. The progression rates of kidney and liver disease were independent of each other. Patients with bi-allelic non-truncating PKHD1 variants had similar progression of kidney and liver disease in comparison to those who were compound heterozygous for a non-truncating and a truncating variant.

10.
J Am Soc Nephrol ; 31(9): 2184-2192, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32631973

RESUMO

BACKGROUND: The rare lysosomal storage disease nephropathic cystinosis presents with renal Fanconi syndrome that evolves in time to CKD. Although biochemical abnormalities in common causes of CKD-mineral and bone disorder have been defined, it is unknown if persistent phosphate wasting in nephropathic cystinosis is associated with a biochemical mineral pattern distinct from that typically observed in CKD-mineral and bone disorder. METHODS: We assessed and compared determinants of mineral homeostasis in patients with nephropathic cystinosis across the predialysis CKD spectrum to these determinants in age- and CKD stage-matched patients, with causes of CKD other than nephropathic cystinosis. RESULTS: The study included 50 patients with nephropathic cystinosis-related CDK and 97 with CKD from other causes. All major aspects of mineral homeostasis were differentially effected in patients with CKD stemming from nephropathic cystinosis versus other causes. Patients with nephropathic cystinosis had significantly lower percent tubular reabsorption of phosphate and fibroblast growth factor-23 (FGF23) at all CKD stages, and lower blood phosphate in CKD stages 3-5. Linear regression analyses demonstrated lower FGF23 levels in nephropathic cystinosis participants at all CKD stages when corrected for eGFR and age, but not when adjusted for serum phosphate. CONCLUSIONS: Nephropathic cystinosis CKD patients have mineral abnormalities that are distinct from those in CKD stemming from other causes. Persistently increased urinary phosphate excretion maintains serum phosphate levels within the normal range, thus protecting patients with nephropathic cystinosis from elevations of FGF23 during early CKD stages. These findings support the notion that phosphate is a significant driver of increased FGF23 levels in CKD and that mineral abnormalities associated with CKD are likely to vary depending on the underlying renal disease.

11.
Stem Cell Res ; 47: 101883, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32619719

RESUMO

Chediak-Higashi Syndrome (CHS) is a lysosome-related organelle (LRO) disorder caused by biallelic mutations in the lysosomal trafficking regulator gene, LYST. The clinical features of CHS include oculocutaneous albinism, primary immunodeficiency, bleeding diathesis, risk for development of hemophagocyticlymphohistiocytosis,and progressive neurological problems. The pathophysiological mechanisms underlying this disease are unknown, so developing therapeutic options remains challenging. In this study,four induced pluripotent stem (iPSC) lines from unrelated CHS patients have been generated and successfully characterized for exploring the role of LYST in health and disease in diversecell types.

12.
PLoS Genet ; 16(6): e1008841, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544203

RESUMO

Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Bainha de Mielina/patologia , Neurogênese/genética , Proteínas Supressoras de Tumor/genética , Animais , Plexo Braquial/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Mutação da Fase de Leitura , Substância Cinzenta/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Imagem por Ressonância Magnética , Neuroglia/patologia , Oligodendroglia , Nervo Isquiático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Sequenciamento Completo do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Mol Genet Metab ; 130(4): 289-296, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32466960

RESUMO

INTRODUCTION: Alkaptonuria (AKU) is a rare inherited disorder of tyrosine metabolism resulting in an accumulation of homogentisic acid oxidation products in the joints and cardiovascular system. Aortic distensibility may be a non-invasive indicator of cardiovascular complications. Descending thoracic aortic distensibility in alkaptonuria has not been studied. METHODS: Patients diagnosed with alkaptonuria underwent Magnetic Resonance Imaging (MRI) and gated non-contrast and contrast-enhanced cardiovascular computed tomography. Using MRI cine images, aortic distensibility of the descending thoracic aorta was determined. RESULTS: Seventy-six patients with alkaptonuria were imaged. When compared to literature normal values, aortic distensibility in AKU was impaired (5.2 vs 6.2 × 10-3, p < .001). Aortic distensibility was inversely related to age (r = -0.6, p = .0001). Hypertensive patients with alkaptonuria had impaired distensibility compared to normotensive patients with alkaptonuria (4.6 vs 5.6 × 10-3, p = .03), and hyperlipidemic patients with alkaptonuria had impaired distensibility compared to non-hyperlipidemic patients with alkaptonuria (4.1 vs 6.0 × 10-3, p = .001). Male hypertensive patients with alkaptonuria had greater distensibility than their female counterparts (5.3 vs 2.9 × 10-3, p = .02). Similarly, male hyperlipidemic patients with alkaptonuria had greater distensibility than their female counterparts (4.8 vs 2.5 × 10-3, p < .01). Of patients with alkaptonuria, those with a coronary artery calcium (CAC) score greater than 100 had more impaired distensibility than those with a CAC score less than 100 (3.5 vs 5.1 × 10-3, p = .01) and those with aortic calcium score greater than 100 had impaired distensibility compared to those with an aortic calcium score less than 100 (3.2 vs 4.9 × 10-3, p = .02). Univariate analysis revealed age, aortic calcification, and hyperlipidemia to be significant factors of distensibility, and multiple regression analysis showed age as the only significant risk factor of distensibility. CONCLUSIONS: Patients with alkaptonuria have impaired aortic distensibility, which is likely an early marker for reduced cardiovascular health. Variables such as age, hypertension, hyperlipidemia, and aortic and coronary calcification were associated with impaired distensibility.

14.
J Inherit Metab Dis ; 43(5): 1037-1045, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32395830

RESUMO

The transmembrane domain recognition complex (TRC) targets cytoplasmic C-terminal tail-anchored (TA) proteins to their respective membranes in the endoplasmic reticulum (ER), Golgi, and mitochondria. It is composed of three proteins, GET4, BAG6, and GET5. We identified an individual with compound heterozygous missense variants (p.Arg122His, p.Ile279Met) in GET4 that reduced all three TRC proteins by 70% to 90% in his fibroblasts, suggesting a possible defect in TA protein targeting. He presented with global developmental delay, intellectual disabilities, seizures, facial dysmorphism, and delayed bone age. We found the TA protein, syntaxin 5, is poorly targeted to Golgi membranes compared to normal controls. Since GET4 regulates ER to Golgi transport, we hypothesized that such transport would be disrupted in his fibroblasts, and discovered that retrograde (but not anterograde) transport was significantly reduced. Despite reduction in the three TRC proteins, their mRNA levels were unchanged, suggesting increased degradation in patient fibroblasts. Treating fibroblasts with the FDA-approved proteasome inhibitor, bortezomib (10 nM), restored syntaxin 5 localization and nearly normalized the levels of all three TRC proteins. Our study identifies the first individual with GET4 mutations.

15.
Biochim Biophys Acta Biomembr ; 1862(12): 183336, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32389669

RESUMO

Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.


Assuntos
Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/genética , Cistinose/patologia , Histiocitose/genética , Histiocitose/patologia , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Doença do Armazenamento de Ácido Siálico/genética , Doença do Armazenamento de Ácido Siálico/patologia , Simportadores/genética , Simportadores/metabolismo
16.
Ann Clin Transl Neurol ; 7(4): 497-506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227455

RESUMO

OBJECTIVE: To characterize the spectrum of neurologic involvement in Erdheim-Chester Disease (ECD), a treatable inflammatory neoplasm of histiocytes. METHODS: Sixty-two patients with ECD were prospectively enrolled in a natural history study that facilitated collection of clinical, imaging, laboratory, neurophysiologic, and pathologic data. RESULTS: Ninety-four percent of the patients had neurologic abnormalities on examination or imaging, and 22% had neurologic symptoms as the initial presentation of ECD. The most common neurologic findings were cognitive impairment, peripheral neuropathy, pyramidal tract signs, cranial nerve involvement, and cerebellar ataxia. Imaging revealed atrophy and demyelination along with focal lesions that were located throughout the nervous system, dura, and extra-axial structures. The BRAF V600E variant correlated with cerebral atrophy. Brain pathology revealed lipid-laden, phagocytic macrophages (histiocytes) accompanied by demyelination and axonal degeneration. INTERPRETATION: In patients with ECD, neurologic morbidity is common and contributes significantly to disability. Since neurologic symptoms can be the presenting feature of ECD and, given the mean delay in ECD diagnosis is 4.2 years, it is critical that neurologists consider of ECD and other histiocytosis in patients with inflammatory, infectious, or neoplastic-appearing white matter. Furthermore, given the broad spectrum of neurologic involvement, neurologists have an important role in a team of specialists treating ECD patients.

17.
Dis Model Mech ; 13(5)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32152089

RESUMO

A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, pheta1 and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient.This article has an associated First Person interview with the first author of the paper.

18.
Mol Genet Metab ; 130(1): 49-57, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165008

RESUMO

BACKGROUND: Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS: Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS: Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION: Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.

19.
Am J Med Genet A ; 182(5): 1278-1283, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150337

RESUMO

Waardenburg syndrome (WS) is a group of genetic disorders associated with varying components of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and eyes. There exist four different WS subtypes, each defined by the absence or presence of additional features. One of the genes associated with WS is SOX10, a key transcription factor for the development of neural crest-derived lineages. Here we report a 12-year-old boy with a novel de novo SOX10 frameshift mutation and unique combination of clinical features including primary peripheral demyelinating neuropathy, hearing loss and visual impairment but absence of Hirschsprung disease and the typical pigmentary changes of hair or skin. This expands the spectrum of currently recognized phenotypes associated with WS and illustrates the phenotypic heterogeneity of SOX10-associated WS.


Assuntos
Predisposição Genética para Doença , Doença de Hirschsprung/genética , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Criança , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/fisiopatologia , Mutação da Fase de Leitura/genética , Doença de Hirschsprung/fisiopatologia , Humanos , Masculino , Linhagem , Fenótipo , Síndrome de Waardenburg/fisiopatologia
20.
Hum Mutat ; 41(3): 543-580, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31898847

RESUMO

Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA