Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630928


Transport properties of electron-doped cuprate Sr1-xLaxCuO2 thin films have been investigated as a function of doping. In particular, optimal- and over-doped samples were obtained by tuning the Sr:La stoichiometric ratio. Optimal-doped samples show a non-Fermi liquid behavior characterized by linear dependence of the resistivity from room temperature down to intermediate temperature (about 150-170 K). However, by approaching temperatures in the superconducting transition, a Fermi-liquid behavior-characterized by a T2-scaling law-was observed. Once established, the transition from a linear-T to a quadratic-T2 behavior was successfully traced back in over-doped samples, even occurring at lower temperatures. In addition, the over-doped samples show a crossover to a linear-T to a logarithmic dependence at high temperatures compatible with anti-ferromagnetic spin fluctuations dominating the normal state properties of electron-doped cuprates.

Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407212


We grew Sr1-xLaxCuO2 thin films and SrCuO2/Sr0.9La0.1CuO2/SrCuO2 trilayers by reflection high-energy diffraction-calibrated layer-by-layer molecular beam epitaxy, to study their electrical transport properties as a function of the doping and thickness of the central Sr0.9La0.1CuO2 layer. For the trilayer samples, as already observed in underdoped SLCO films, the electrical resistivity versus temperature curves as a function of the central layer thickness show, for thicknesses thinner than 20 unit cells, sudden upturns in the low temperature range with the possibility for identifying, in the normal state, the T* and a T** temperatures, respectively, separating high-temperature linear behavior and low-temperature quadratic dependence. By plotting the T* and T** values as a function of TConset for both the thin films and the trilayers, the data fall on the same curves. This result suggests that, for the investigated trilayers, the superconducting critical temperature is the important parameter able to describe the normal state properties and that, in the limit of very thin central layers, such properties are mainly influenced by the modification of the energy band structure and not by interface-related disorder.

J Chem Phys ; 153(14): 144705, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086829


High-performance photocathodes for many prominent particle accelerator applications, such as x-ray free-electron lasers, cannot be grown in situ. These highly reactive materials must be grown and then transported to the electron gun in an ultrahigh-vacuum (UHV) suitcase, during which time monolayer-level oxidation is unavoidable. Thin film Cs3Sb photocathodes were grown on a variety of substrates. Their performance and chemical state were measured by x-ray photoelectron spectroscopy after transport in a UHV suitcase as well as after O2-induced oxidation. The unusual chemistry of cesium oxides enabled trace amounts of oxygen to drive structural reorganization at the photocathode surface. This reorganization pulled cesium from the bulk photocathode, leading to the development of a structurally complex and O2-exposure-dependent cesium oxide layer. This oxidation-induced phase segregation led to downward band bending of at least 0.36 eV as measured from shifts in the Cs 3d5/2 binding energy. At low O2 exposures, the surface developed a low work function cesium suboxide overlayer that had little effect on quantum efficiency (QE). At somewhat higher O2 exposures, the overlayer transformed to Cs2O; no antimony or antimony oxides were observed in the near-surface region. The development of this overlayer was accompanied by a 1000-fold decrease in QE, which effectively destroyed the photocathode via the formation of a tunnel barrier. The O2 exposures necessary for degradation were quantified. As little as 100 L of O2 irreversibly damaged the photocathode. These observations are discussed in the context of the rich chemistry of alkali oxides, along with potential material strategies for photocathode improvement.