Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Mater Sci Eng C Mater Biol Appl ; 119: 111649, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321685


The interaction of nanoparticles with protein and cells may provide important information regarding their biomedical implementations. Herein, after synthesis of tin oxide (SnO2) nanoparticles by hydrothermal method, their interaction with human serum albumin (HSA) was evaluated by multispectroscopic and molecular docking (MD) approaches. Furthermore, the selective antiproliferative impact of SnO2 nanoparticles against leukemia K562 cells was assessed by different cellular assays, whereas lymphocytes were used as control cells. TEM, DLS, zeta potential and XRD techniques showed that crystalline SnO2 nanoparticles have a size of less than 50 nm with a good colloidal stability. Fluorescence and CD spectroscopy analysis indicated that the HSA undergoes some slight conformational changes after interaction with SnO2 nanoparticles, whereas the secondary structure of HSA remains intact. Moreover, MD outcomes revealed that the charged residues of HSA preferentially bind to SnO2 nanoclusters in the binding pocket. Antiproliferative examinations displayed that SnO2 nanoparticles can selectively cause the mortality of K562 cells through induction of cell membrane leakage, activation of caspase-9, -8, -3, down regulation of Bcl-2 mRNA, the elevation of ROS level, S phase arrest, and apoptosis. In conclusion, this data may indicate that SnO2 nanoparticles can be used as promising particles to be integrated into therapeutic platforms.

Nanopartículas , Compostos de Estanho , Humanos , Células K562 , Simulação de Acoplamento Molecular
J Biomol Struct Dyn ; 38(12): 3676-3686, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31476976


Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24 hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.Communicated by Ramaswamy H. Sarma.

Apoptose , Linfócitos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Heme , Hemoglobinas , Humanos