Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591491

RESUMO

Sequencing DNA derived from archaic bones has enabled genetic comparison of Neanderthals and anatomically modern humans (AMHs), and revealed that they interbred. However, interpreting what genetic differences imply about their phenotypic differences remains challenging. Here, we introduce an approach for identifying divergent gene regulation between archaic hominins, such as Neanderthals, and AMH sequences, and find 766 genes that are likely to have been divergently regulated (DR) by Neanderthal haplotypes that do not remain in AMHs. DR genes include many involved in phenotypes known to differ between Neanderthals and AMHs, such as the structure of the rib cage and supraorbital ridge development. They are also enriched for genes associated with spontaneous abortion, polycystic ovary syndrome, myocardial infarction and melanoma. Phenotypes associated with modern human variation in these genes' regulation in ~23,000 biobank patients further support their involvement in immune and cardiovascular phenotypes. Comparing DR genes between two Neanderthals and a Denisovan revealed divergence in the immune system and in genes associated with skeletal and dental morphology that are consistent with the archaeological record. These results establish differences in gene regulatory architecture between AMHs and archaic hominins, and provide an avenue for exploring phenotypic differences between archaic groups from genomic information alone.

2.
PLoS Genet ; 15(7): e1008245, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31306407

RESUMO

Major depression is a common and severe psychiatric disorder with a highly polygenic genetic architecture. Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with major depression, but the exact causal genes and biological mechanisms are largely unknown. Tissue-specific network approaches may identify molecular mechanisms underlying major depression and provide a biological substrate for integrative analyses. We provide a framework for the identification of individual risk genes and gene co-expression networks using genome-wide association summary statistics and gene expression information across multiple human brain tissues and whole blood. We developed a novel gene-based method called eMAGMA that leverages tissue-specific eQTL information to identify 99 biologically plausible risk genes associated with major depression, of which 58 are novel. Among these novel associations is Complement Factor 4A (C4A), recently implicated in schizophrenia through its role in synaptic pruning during postnatal development. Major depression risk genes were enriched in gene co-expression modules in multiple brain tissues and the implicated gene modules contained genes involved in synaptic signalling, neuronal development, and cell transport pathways. Modules enriched with major depression signals were strongly preserved across brain tissues, but were weakly preserved in whole blood, highlighting the importance of using disease-relevant tissues in genetic studies of psychiatric traits. We identified tissue-specific genes and gene co-expression networks associated with major depression. Our novel analytical framework can be used to gain fundamental insights into the functioning of the nervous system in major depression and other brain-related traits.

3.
Pain ; 160(10): 2328-2337, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31145213

RESUMO

Factors contributing to development of complex regional pain syndrome (CRPS) are not fully understood. This study examined possible epigenetic mechanisms that may contribute to CRPS after traumatic injury. DNA methylation profiles were compared between individuals developing CRPS (n = 9) and those developing non-CRPS neuropathic pain (n = 38) after undergoing amputation following military trauma. Linear Models for Microarray (LIMMA) analyses revealed 48 differentially methylated cytosine-phosphate-guanine dinucleotide (CpG) sites between groups (unadjusted P's < 0.005), with the top gene COL11A1 meeting Bonferroni-adjusted P < 0.05. The second largest differential methylation was observed for the HLA-DRB6 gene, an immune-related gene linked previously to CRPS in a small gene expression study. For all but 7 of the significant CpG sites, the CRPS group was hypomethylated. Numerous functional Gene Ontology-Biological Process categories were significantly enriched (false discovery rate-adjusted q value <0.15), including multiple immune-related categories (eg, activation of immune response, immune system development, regulation of immune system processes, and antigen processing and presentation). Differentially methylated genes were more highly connected in human protein-protein networks than expected by chance (P < 0.05), supporting the biological relevance of the findings. Results were validated in an independent sample linking a DNA biobank with electronic health records (n = 126 CRPS phenotype, n = 19,768 non-CRPS chronic pain phenotype). Analyses using PrediXcan methodology indicated differences in the genetically determined component of gene expression in 7 of 48 genes identified in methylation analyses (P's < 0.02). Results suggest that immune- and inflammatory-related factors might confer risk of developing CRPS after traumatic injury. Validation findings demonstrate the potential of using electronic health records linked to DNA for genomic studies of CRPS.

4.
Am J Hum Genet ; 104(6): 1097-1115, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104770

RESUMO

Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations.

6.
Nat Genet ; 51(6): 933-940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086352

RESUMO

The genetic architecture of psychiatric disorders is characterized by a large number of small-effect variants1 located primarily in non-coding regions, suggesting that the underlying causal effects may influence disease risk by modulating gene expression2-4. We provide comprehensive analyses using transcriptome data from an unprecedented collection of tissues to gain pathophysiological insights into the role of the brain, neuroendocrine factors (adrenal gland) and gastrointestinal systems (colon) in psychiatric disorders. In each tissue, we perform PrediXcan analysis and identify trait-associated genes for schizophrenia (n associations = 499; n unique genes = 275), bipolar disorder (n associations = 17; n unique genes = 13), attention deficit hyperactivity disorder (n associations = 19; n unique genes = 12) and broad depression (n associations = 41; n unique genes = 31). Importantly, both PrediXcan and summary-data-based Mendelian randomization/heterogeneity in dependent instruments analyses suggest potentially causal genes in non-brain tissues, showing the utility of these tissues for mapping psychiatric disease genetic predisposition. Our analyses further highlight the importance of joint tissue approaches as 76% of the genes were detected only in difficult-to-acquire tissues.


Assuntos
Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/diagnóstico , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
7.
Clin Cancer Res ; 25(13): 4104-4116, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952644

RESUMO

PURPOSE: Cisplatin, a commonly used chemotherapeutic, results in tinnitus, the phantom perception of sound. Our purpose was to identify the clinical and genetic determinants of tinnitus among testicular cancer survivors (TCS) following cisplatin-based chemotherapy. EXPERIMENTAL DESIGN: TCS (n = 762) were dichotomized to cases (moderate/severe tinnitus; n = 154) and controls (none; n = 608). Logistic regression was used to evaluate associations with comorbidities and SNP dosages in genome-wide association study (GWAS) following quality control and imputation (covariates: age, noise exposure, cisplatin dose, genetic principal components). Pathway over-representation tests and functional studies in mouse auditory cells were performed. RESULTS: Cisplatin-induced tinnitus (CisIT) significantly associated with age at diagnosis (P = 0.007) and cumulative cisplatin dose (P = 0.007). CisIT prevalence was not significantly greater in 400 mg/m2-treated TCS compared with 300 (P = 0.41), but doses >400 mg/m2 (median 580, range 402-828) increased risk by 2.61-fold (P < 0.0001). CisIT cases had worse hearing at each frequency (0.25-12 kHz, P < 0.0001), and reported more vertigo (OR = 6.47; P < 0.0001) and problems hearing in a crowd (OR = 8.22; P < 0.0001) than controls. Cases reported poorer health (P < 0.0001) and greater psychotropic medication use (OR = 2.4; P = 0.003). GWAS suggested a variant near OTOS (rs7606353, P = 2 × 10-6) and OTOS eQTLs were significantly enriched independently of that SNP (P = 0.018). OTOS overexpression in HEI-OC1, a mouse auditory cell line, resulted in resistance to cisplatin-induced cytotoxicity. Pathway analysis implicated potassium ion transport (q = 0.007). CONCLUSIONS: CisIT associated with several neuro-otological symptoms, increased use of psychotropic medication, and poorer health. OTOS, expressed in the cochlear lateral wall, was implicated as protective. Future studies should investigate otoprotective targets in supporting cochlear cells.

8.
Nat Commun ; 10(1): 1741, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988301

RESUMO

Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas
9.
Am J Hum Genet ; 104(3): 503-519, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827500

RESUMO

Although the use of model systems for studying the mechanism of mutations that have a large effect is common, we highlight here the ways that zebrafish-model-system studies of a gene, GRIK5, that contributes to the polygenic liability to develop eye diseases have helped to illuminate a mechanism that implicates vascular biology in eye disease. A gene-expression prediction derived from a reference transcriptome panel applied to BioVU, a large electronic health record (EHR)-linked biobank at Vanderbilt University Medical Center, implicated reduced GRIK5 expression in diverse eye diseases. We tested the function of GRIK5 by depletion of its ortholog in zebrafish, and we observed reduced blood vessel numbers and integrity in the eye and increased vascular permeability. Analyses of EHRs in >2.6 million Vanderbilt subjects revealed significant comorbidity of eye and vascular diseases (relative risks 2-15); this comorbidity was confirmed in 150 million individuals from a large insurance claims dataset. Subsequent studies in >60,000 genotyped BioVU participants confirmed the association of reduced genetically predicted expression of GRIK5 with comorbid vascular and eye diseases. Our studies pioneer an approach that allows a rapid iteration of the discovery of gene-phenotype relationships to the primary genetic mechanism contributing to the pathophysiology of human disease. Our findings also add dimension to the understanding of the biology driven by glutamate receptors such as GRIK5 (also referred to as GLUK5 in protein form) and to mechanisms contributing to human eye diseases.

10.
Nat Genet ; 51(4): 659-674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911161

RESUMO

Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.


Assuntos
Encéfalo/fisiopatologia , Expressão Gênica/genética , Esquizofrenia/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Risco , Transcriptoma/genética
11.
Hum Mol Genet ; 28(7): 1212-1224, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624610

RESUMO

Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-ancestry and African-ancestry populations and identified substantial predictive power using European-derived models in a non-European target population. We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset.


Assuntos
Previsões/métodos , Metaboloma/genética , Metaboloma/fisiologia , Adulto , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Mapeamento Cromossômico/métodos , Grupos Étnicos/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
12.
Elife ; 72018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281024

RESUMO

Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. Bid-/- mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, BidM148T, associates with MI predisposition. Furthermore, Bid but not BidM148T associates with Mcl-1Matrix, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.

13.
Nat Genet ; 50(7): 956-967, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29955180

RESUMO

We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis-eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40-80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU.

14.
Diabetes ; 67(7): 1272-1284, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748289

RESUMO

During reduced energy intake, skeletal muscle maintains homeostasis by rapidly suppressing insulin-stimulated glucose utilization. Loss of this adaptation is observed with deficiency of the fatty acid transporter CD36. A similar loss is also characteristic of the insulin-resistant state where CD36 is dysfunctional. To elucidate what links CD36 to muscle glucose utilization, we examined whether CD36 signaling might influence insulin action. First, we show that CD36 deletion specific to skeletal muscle reduces expression of insulin signaling and glucose metabolism genes. It decreases muscle ceramides but impairs glucose disposal during a meal. Second, depletion of CD36 suppresses insulin signaling in primary-derived human myotubes, and the mechanism is shown to involve functional CD36 interaction with the insulin receptor (IR). CD36 promotes tyrosine phosphorylation of IR by the Fyn kinase and enhances IR recruitment of P85 and downstream signaling. Third, pretreatment for 15 min with saturated fatty acids suppresses CD36-Fyn enhancement of IR phosphorylation, whereas unsaturated fatty acids are neutral or stimulatory. These findings define mechanisms important for muscle glucose metabolism and optimal insulin responsiveness. Potential human relevance is suggested by genome-wide analysis and RNA sequencing data that associate genetically determined low muscle CD36 expression to incidence of type 2 diabetes.


Assuntos
Antígenos CD36/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Animais , Antígenos CD36/genética , Células CHO , Metabolismo dos Carboidratos/genética , Células Cultivadas , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
15.
Drug Alcohol Depend ; 188: 94-101, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758381

RESUMO

BACKGROUND: Alcohol and tobacco use are heritable phenotypes. However, only a small number of common genetic variants have been identified, and common variants account for a modest proportion of the heritability. Therefore, this study aims to investigate the role of low-frequency and rare variants in alcohol and tobacco use. METHODS: We meta-analyzed ExomeChip association results from eight discovery cohorts and included 12,466 subjects and 7432 smokers in the analysis of alcohol consumption and tobacco use, respectively. The ExomeChip interrogates low-frequency and rare exonic variants, and in addition a small pool of common variants. We investigated top variants in an independent sample in which ICD-9 diagnoses of "alcoholism" (N = 25,508) and "tobacco use disorder" (N = 27,068) had been assessed. In addition to the single variant analysis, we performed gene-based, polygenic risk score (PRS), and pathway analyses. RESULTS: The meta-analysis did not yield exome-wide significant results. When we jointly analyzed our top results with the independent sample, no low-frequency or rare variants reached significance for alcohol consumption or tobacco use. However, two common variants that were present on the ExomeChip, rs16969968 (p = 2.39 × 10-7) and rs8034191 (p = 6.31 × 10-7) located in CHRNA5 and AGPHD1 at 15q25.1, showed evidence for association with tobacco use. DISCUSSION: Low-frequency and rare exonic variants with large effects do not play a major role in alcohol and tobacco use, nor does the aggregate effect of ExomeChip variants. However, our results confirmed the role of the CHRNA5-CHRNA3-CHRNB4 cluster of nicotinic acetylcholine receptor subunit genes in tobacco use.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Éxons/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Uso de Tabaco/genética , Consumo de Bebidas Alcoólicas/epidemiologia , Alcoolismo/diagnóstico , Alcoolismo/epidemiologia , Alcoolismo/genética , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Nicotínicos/genética , Fatores de Risco , Uso de Tabaco/epidemiologia , Tabagismo/diagnóstico , Tabagismo/genética
17.
Sci Rep ; 8(1): 733, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335598

RESUMO

Pemetrexed is indicated for non-small cell lung carcinoma and mesothelioma, but often has limited efficacy due to drug resistance. To probe the molecular mechanisms underlying chemotherapeutic response, we performed mRNA and microRNA (miRNA) expression profiling of pemetrexed treated and untreated lymphoblastoid cell lines (LCLs) and applied a hierarchical Bayesian method. We identified genetic variation associated with gene expression in human lung tissue for the most significant differentially expressed genes (Benjamini-Hochberg [BH] adjusted p < 0.05) using the Genotype-Tissue Expression data and found evidence for their clinical relevance using integrated molecular profiling and lung adenocarcinoma survival data from The Cancer Genome Atlas project. We identified 39 miRNAs with significant differential expression (BH adjusted p < 0.05) in LCLs. We developed a gene expression based imputation model of drug sensitivity, quantified its prediction performance, and found a significant correlation of the imputed phenotype generated from expression data with survival time in lung adenocarcinoma patients. Differentially expressed genes (MTHFD2 and SUFU) that are putative targets of differentially expressed miRNAs also showed differential perturbation in A549 fusion lung tumor cells with further replication in A549 cells. Our study suggests pemetrexed may be used in combination with agents that target miRNAs to increase its cytotoxicity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos/efeitos dos fármacos , MicroRNAs/metabolismo , Pemetrexede/farmacologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Resistência a Medicamentos , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos
18.
Diabetes ; 67(1): 155-164, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084784

RESUMO

Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and ß-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and ß-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiologia , Insulina/metabolismo , Sono/fisiologia , Adiposidade/genética , Adiposidade/fisiologia , Adulto , Glicemia/metabolismo , Eletroencefalografia , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Sono/genética
19.
Genet Epidemiol ; 42(1): 49-63, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29114909

RESUMO

BACKGROUND: Epistasis and gene-environment interactions are known to contribute significantly to variation of complex phenotypes in model organisms. However, their identification in human association studies remains challenging for myriad reasons. In the case of epistatic interactions, the large number of potential interacting sets of genes presents computational, multiple hypothesis correction, and other statistical power issues. In the case of gene-environment interactions, the lack of consistently measured environmental covariates in most disease studies precludes searching for interactions and creates difficulties for replicating studies. RESULTS: In this work, we develop a new statistical approach to address these issues that leverages genetic ancestry, defined as the proportion of ancestry derived from each ancestral population (e.g., the fraction of European/African ancestry in African Americans), in admixed populations. We applied our method to gene expression and methylation data from African American and Latino admixed individuals, respectively, identifying nine interactions that were significant at P<5×10-8. We show that two of the interactions in methylation data replicate, and the remaining six are significantly enriched for low P-values (P<1.8×10-6). CONCLUSION: We show that genetic ancestry can be a useful proxy for unknown and unmeasured covariates in the search for interaction effects. These results have important implications for our understanding of the genetic architecture of complex traits.


Assuntos
Afro-Americanos/genética , Grupo com Ancestrais do Continente Africano/genética , Epistasia Genética/genética , Grupo com Ancestrais do Continente Europeu/genética , Interação Gene-Ambiente , Hispano-Americanos/genética , Modelos Genéticos , Metilação de DNA , Humanos , Fenótipo
20.
Sci Data ; 4: 170179, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257133

RESUMO

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Variação Genética , Grupo com Ancestrais do Continente Europeu , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA