Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 10(46): 39428-39434, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30411607


We use ultrasonic spray-coating to fabricate cesium-containing triple-cation perovskite solar cells with a power-conversion efficiency of up to 17.8%. Our fabrication route involves a brief exposure of the partially wet spray-cast films to a low vacuum, a process that is used to control film crystallization. We show that films that are not vacuum-exposed are relatively rough and inhomogeneous, while vacuum-exposed films are smooth and consist of small and densely packed perovskite crystals. The process techniques developed here represent a step toward a scalable and industrially compatible manufacturing process capable of creating stable and high-performance perovskite solar cells.

ACS Appl Mater Interfaces ; 8(3): 2232-7, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26726763


Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance.

Nanoscale ; 8(12): 6265-70, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26549434


The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (α-HC(NH2)2PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure α-HC(NH2)2PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%.

J Phys Chem Lett ; 6(23): 4827-39, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26560696


The use of organometal trihalide perovskites (OTPs) in perovskite solar cells (PSCs) is revolutionizing the field of photovoltaics, which is being led by advances in solution processing of OTP thin films. First, we look at fundamental phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution involved in the solution-processing of OTP thin films for PSCs from a materials-science perspective. Established scientific principles that govern some of these phenomena are invoked in the context of specific literature examples of solution-processed OTP thin films. Second, the nature and the unique characteristics of OTP thin-film microstructures themselves are discussed from a materials-science perspective. Finally, we discuss the challenges and opportunities in the characterization of OTP thin films for not only gaining a deep understanding of defects and microstructures but also elucidating classical and nonclassical phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution in these films. The overall goal is to have deterministic control over the solution-processing of tailored OTP thin films with desired morphologies and microstructures.