Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; : 1-9, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31566996

RESUMO

Accurate prediction of in vivo metabolic pathways in humans can be challenging because in vitro liver matrices may fail to produce certain in vivo metabolites. Rat and human spheroids, generated from cryopreserved hepatocytes in media that contained minimal amount of serum, maintained morphology, viability and cytochrome P450 (CYP) activities for at least a week without media exchange. With spheroid cultures, multiple Phase I and Phase II metabolites were observed in rat and human spheroid cultures that were incubated with loratadine (LOR) for multiple days. Consistent with in vivo observations, 3-hydroxydesloratadine, (3-OH-DL), along with its glucuronide, were observed in human spheroids, but not in rat spheroids. Interestingly, the putative intermediate metabolite leading to 3-OH-DL, DL-N-glucuronide, was observed in incubations with both rat and human spheroids. In conclusion, hepatocyte spheroid were capable of recapitulating the inter-species differences in metabolism between human and rat for LOR, therefore, it may represent a viable model for studying complex metabolic pathways.

2.
Drug Metab Dispos ; 47(11): 1352-1360, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31427432

RESUMO

Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.

3.
J Pharmacol Exp Ther ; 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361237

RESUMO

Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of OAT1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1,000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 h after receiving PROB (40 mg and 1,000 mg orally) on Days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased AUC of PDA by 3.1-fold (dosed alone; p < 0.05), and 3.2-fold (coadministered with FSM; p < 0.01), as compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (p > 0.05) and 2.1-fold (p < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 versus 3.3, respectively). PDA and HVA CLR were decreased by PROB to smaller extents compared to FSM (0.35-0.37 and 0.67-0.73 versus 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and its plasma exposure respond in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CLR between subjects is more favourable relative to HVA.

4.
Bioanalysis ; 10(18): 1473-1485, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215261

RESUMO

AIM: A robust LC-MS/MS assay was developed to quantify endogenous 1, 14-tetradecanedioic acid (TDA) and 1, 16-hexadecanedioic acid (HDA) in human plasma as potential biomarkers for evaluating drug-drug interactions mediated by the hepatic drug transporters, organic anion-transporting polypeptides. RESULTS: This assay was validated using fit-for-purpose approach over standard curve range of 2.5-1000 nM for TDA and HDA using analyte-free charcoal-stripped human plasma as the surrogate matrix. Chromatographic separation condition was successfully optimized to separate TDA from an interference peak while maintaining both analytes in neutral forms to minimize carryover issue. CONCLUSION: The described assay is currently applied to a clinical study for evaluating TDA/HDA as potential substitute biomarkers for drug-drug interaction studies.

5.
Drug Metab Dispos ; 46(2): 178-188, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162614

RESUMO

Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted.


Assuntos
Biomarcadores/sangue , Ácido Homovanílico/sangue , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ácido Piridóxico/sangue , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Macaca fascicularis , Metabolômica/métodos , Probenecid/metabolismo
6.
J Nucl Med ; 59(3): 529-535, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29025984

RESUMO

The programmed death protein (PD-1) and its ligand (PD-L1) play critical roles in a checkpoint pathway cancer cells exploit to evade the immune system. A same-day PET imaging agent for measuring PD-L1 status in primary and metastatic lesions could be important for optimizing drug therapy. Herein, we have evaluated the tumor targeting of an anti-PD-L1 adnectin after 18F-fluorine labeling. Methods: An anti-PD-L1 adnectin was labeled with 18F in 2 steps. This synthesis featured fluorination of a novel prosthetic group, followed by a copper-free click conjugation to a modified adnectin to generate 18F-BMS-986192. 18F-BMS-986192 was evaluated in tumors using in vitro autoradiography and PET with mice bearing bilateral PD-L1-negative (PD-L1(-)) and PD-L1-positive (PD-L1(+)) subcutaneous tumors. 18F-BMS-986192 was evaluated for distribution, binding, and radiation dosimetry in a healthy cynomolgus monkey. Results:18F-BMS-986192 bound to human and cynomolgus PD-L1 with a dissociation constant of less than 35 pM, as measured by surface plasmon resonance. This adnectin was labeled with 18F to yield a PET radioligand for assessing PD-L1 expression in vivo. 18F-BMS-986192 bound to tumor tissues as a function of PD-L1 expression determined by immunohistochemistry. Radioligand binding was blocked in a dose-dependent manner. In vivo PET imaging clearly visualized PD-L1 expression in mice implanted with PD-L1(+), L2987 xenograft tumors. Two hours after dosing, a 3.5-fold-higher uptake (2.41 ± 0.29 vs. 0.82 ± 0.11 percentage injected dose per gram, P < 0.0001) was observed in L2987 than in control HT-29 (PD-L1(-)) tumors. Coadministration of 3 mg/kg ADX_5322_A02 anti-PD-L1 adnectin reduced tumor uptake at 2 h after injection by approximately 70%, whereas HT-29 uptake remained unchanged, demonstrating PD-L1-specific binding. Biodistribution in a nonhuman primate showed binding in the PD-L1-rich spleen, with rapid blood clearance through the kidneys and bladder. Binding in the PD-L1(+) spleen was reduced by coadministration of BMS-986192. Dosimetry estimates indicate that the kidney is the dose-limiting organ, with an estimated human absorbed dose of 2.20E-01 mSv/MBq. Conclusion:18F-BMS-986192 demonstrated the feasibility of noninvasively imaging the PD-L1 status of tumors by small-animal PET studies. Clinical studies with 18F-BMS-986192 are under way to measure PD-L1 expression in human tumors.

7.
Br J Clin Pharmacol ; 84(1): 130-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850715

RESUMO

AIMS: BMS-823778 is an inhibitor of 11ß-hydroxysteroid dehydrogenase type-1, and thus a potential candidate for Type 2 diabetes treatment. Here, we investigated the metabolism and pharmacokinetics of BMS-823778 to understand its pharmacokinetic variations in early clinical trials. METHODS: The metabolism of BMS-823778 was characterized in multiple in vitro assays. Pharmacokinetics were evaluated in healthy volunteers, prescreened as CYP2C19 extensive metabolizers (EM) or poor metabolizers (PM), with a single oral dose of [14 C]BMS-823778 (10 mg, 80 µCi). RESULTS: Three metabolites (<5%) were identified in human hepatocytes and liver microsomes (HLM) incubations, including two hydroxylated metabolites (M1 and M2) and one glucuronide conjugate (M3). As the most abundant metabolite, M1 was formed mainly through CYP2C19. M1 formation was also correlated with CYP2C19 activities in genotyped HLM. In humans, urinary excretion of dosed radioactivity was significantly higher in EM (68.8%; 95% confidence interval 61.3%, 76.3%) than in PM (47.0%; 43.5%, 50.6%); only small portions (<2%) were present in faeces or bile from both genotypes. In plasma, BMS-823778 exposure in PM was significantly (5.3-fold, P = 0.0097) higher than in EM. Furthermore, total radioactivity exposure was significantly higher (P < 0.01) than BMS-823778 exposure in all groups, indicating the presence of metabolites. M1 was the only metabolite observed in plasma, and much lower in PM. In urine, the amount of M1 and its oxidative metabolite in EM was 7-fold of that in PM, while more glucuronide conjugates of BMS-823778 and M1 were excreted in PM. CONCLUSIONS: CYP2C19 polymorphisms significantly impacted systemic exposure and metabolism pathways of BMS-823778 in humans.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Citocromo P-450 CYP2C19/genética , Polimorfismo Genético , Piridinas/farmacocinética , Eliminação Renal/genética , Triazóis/farmacocinética , Adulto , Esquema de Medicação , Genótipo , Glucuronídeos/metabolismo , Voluntários Saudáveis , Hepatócitos/metabolismo , Humanos , Hidroxilação , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/metabolismo , Triazóis/administração & dosagem , Triazóis/sangue , Triazóis/metabolismo , Adulto Jovem
8.
Exp Biol Med (Maywood) ; 242(16): 1579-1585, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28622731

RESUMO

Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Indústria Farmacêutica , Humanos , Dispositivos Lab-On-A-Chip
9.
Drug Metab Dispos ; 45(8): 908-919, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576766

RESUMO

Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.


Assuntos
Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Coproporfirinas/sangue , Sulfato de Desidroepiandrosterona/sangue , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ácidos Palmíticos/sangue , Adolescente , Adulto , Área Sob a Curva , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Interações de Medicamentos/fisiologia , Células HEK293 , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Rifampina/farmacologia , Rosuvastatina Cálcica/farmacologia , Adulto Jovem
10.
J Pharmacol Exp Ther ; 362(3): 385-394, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645914

RESUMO

The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/metabolismo , Cromanos/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/genética , Hipoglicemiantes/farmacologia , Tiazolidinedionas/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bile/metabolismo , Colesterol 7-alfa-Hidroxilase/biossíntese , Colesterol 7-alfa-Hidroxilase/genética , Técnicas de Inativação de Genes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Troglitazona , Regulação para Cima/efeitos dos fármacos
11.
Anal Chem ; 89(9): 5144-5151, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28402627

RESUMO

With the development of modern instrumentation and technologies, mass spectrometry based assays have played an important role in protein bioanalysis. We have developed a novel strategy by combining the "bottom-up" and "top-down" approaches using both high-resolution (HRMS) and selected reaction monitoring (SRM) based mass spectrometric detection to quantify a positron emission tomography (PET) detection tracer for an oncology marker. Monkey plasma samples were processed by immunocapture purification, followed by liquid chromatography (LC) with HRMS full scan analysis. Summed multiple charge states and multiple isotopes per charge state of the analyte were used during quantitation for optimized sensitivity. After the HRMS analysis, the remaining samples were digested by trypsin, followed by SRM detection. The HRMS approach provided the solution to a unique problem related to stability of the protein conjugate by quantifying the intact protein. The SRM method only measured a signature peptide generated from enzymatic digestion, but had a lower quantitation limit to meet the sensitivity requirement to assess the pharmacokinetics in a toxicology study. Both methods demonstrated good sensitivity, accuracy, precision and robustness, and the results revealed that there was no significant difference between the data sets obtained from both methods, indicating no in vivo or ex vivo degradation occurred in the incurred samples after dosing. This workflow not only provided the quantitative results for pharmacokinetic evaluation, but also revealed valuable in vivo stability information on the intact protein level.

12.
Chem Res Toxicol ; 29(12): 2040-2057, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989144

RESUMO

The formation of drug-protein adducts is considered an important feature in the pharmacological and toxicological profiles of many drugs. Mechanistic insights into the role of specific protein adduct formation in pharmacology and toxicology remain scarce, partly due to the availability of tools to identify and characterize the specific protein adducts, and partly due to the scarcity of relevant in vitro and in vivo predictive models. This review serves to provide a review on the current state of science on the chemistry, toxicology, and methods of detection and characterization of drug-protein adducts and to offer some perspective on the future directions of research into the role of protein adducts in drug effects and toxicity.


Assuntos
Preparações Farmacêuticas/química , Proteínas/química , Testes de Toxicidade , Animais , Humanos , Modelos Biológicos
13.
Acta Pharm Sin B ; 6(5): 460-467, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27709015

RESUMO

To assess targeting of an epothilone folate conjugate (BMS-753493) to the folate receptor (FR)-overexpressed tumor in mice bearing both FR+ and FR- tumors, a series of experiments were conducted by quantitative whole-body autoradiography (QWBA) and LC-MS/MS following i.v. administration of BMS-753493 or its active moiety, BMS-748285 in mice bearing FR+ (98M109) and FR- (M109) tumors. QWBA showed [3H]BMS-753493-derived radioactivity was extensively distributed to various tissues. The FR over-expressing 98M109 tumors showed consistently higher level of radioactivity than FR-negative tumors (i.e., M109 tumors) up to 48 h post dose of [3H]BMS-753493, despite the magnitude of difference between the tumors is relatively small (generally 3~5-fold). The radioactivity level in 98M109 tumors was 2~12-fold of normal tissues except intestine/content at 48 h post dose. No selective radioactivity uptake into 98M109 tumors over M109 or normal tissues was observed after i.v. administration of the active epothilone, [3H]BMS-748285. LC-MS/MS measurements demonstrated that the concentrations of BMS-748285, presumably from hydrolysis of the folate conjugate, in 98M109 tumors were greater than those in M109 tumors after i.v. administration of BMS-753493 (2-3-fold) whereas no differential uptake in the tumors following BMS-748285 administration. Those data were consistent with radioactivity determinations. Those results demonstrated that the folate conjugation in BMS-753493 enabled moderately preferential distribution of the active epothilone to FR over-expressing 98M109 tumors, thereby supporting targeted delivery of cytotoxics through the folate receptor.

14.
Drug Metab Rev ; 48(4): 473-501, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533622

RESUMO

The bioactivation of drugs is often associated with toxicological outcomes; however, for most cases, the causal relationship between bioactivation and toxicity is not well established despite extensive research that attempts to elucidate the mechanisms leading to the formation of chemically reactive species, presumably the initial step towards adverse reactions. Due to rapid advancement in the research of cytochrome P450s (CYPs) and the prevalence of CYP involvement in the metabolic clearance of pharmaceuticals, CYP-mediated bioactivation is widely investigated and reviewed, while non-CYP-mediated bioactivation has not been emphasized. The widespread use of metabolic stability screening in drug discovery, however, has led to the identification of new chemical entities that rely on non-CYP enzymes for clearance, and the number of drugs that undergo metabolism via these enzymes has increased. Non-CYP enzymes can be divided into four general categories according to their enzymatic function, namely, oxidative, reductive, conjugative and hydrolytic. The aim of this review is to complement the existing literature on CYP-mediated metabolism by focusing on bioactivation mediated non-CYP enzymes and provide representative examples in each category.


Assuntos
Biotransformação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidrólise , Desintoxicação Metabólica Fase II , Oxirredução
15.
Biopharm Drug Dispos ; 37(5): 276-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27059119

RESUMO

The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Pravastatina/farmacocinética , Ácido Taurocólico/farmacocinética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Anticolesterolemiantes/sangue , Anticolesterolemiantes/farmacocinética , Ácidos e Sais Biliares/metabolismo , Colagogos e Coleréticos/sangue , Colagogos e Coleréticos/farmacocinética , Fígado/metabolismo , Masculino , Pravastatina/sangue , Ratos Sprague-Dawley , Ratos Transgênicos , Ácido Taurocólico/sangue
16.
Bioanalysis ; 8(4): 265-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807991

RESUMO

BACKGROUND: A target protein-based affinity extraction LC-MS/MS method was developed to enable plasma level determination following ultralow dosing (0.1-3 µg/kg) of an inhibitor of apoptosis proteins molecule. Methodology & results: Affinity extraction (AE) utilizing immobilized target protein BIR2/BIR3 was used to selectively capture the inhibitor of apoptosis proteins molecule from dog plasma and enable removal of background matrix components. Pretreatment of plasma samples using protein precipitation was found to provide an additional sensitivity gain. A LLOQ of 7.8 pM was achieved by combining protein precipitation with AE. The method was used to support an ultralow dose dog toxicity study. CONCLUSION: AE-LC-MS/MS, utilizing target protein, is a highly sensitive methodology for small molecule quantification with potential for broader applicability.


Assuntos
Análise Química do Sangue/métodos , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Isoquinolinas/análise , Limite de Detecção , Oligopeptídeos/análise , Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Cães , Feminino , Humanos , Proteínas Imobilizadas/antagonistas & inibidores , Proteínas Imobilizadas/química , Proteínas Inibidoras de Apoptose/química , Isoquinolinas/química , Isoquinolinas/farmacologia , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
17.
J Chromatogr A ; 1439: 137-143, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26589943

RESUMO

Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.


Assuntos
Carbamatos/análise , Hipoglicemiantes/análise , Piperidinas/análise , Animais , Carbamatos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Hipoglicemiantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microinjeções , Microtomia , Piperidinas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
18.
Chem Biol Interact ; 255: 23-30, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26683212

RESUMO

The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Xenopus laevis
19.
Chem Res Toxicol ; 28(4): 775-81, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25654186

RESUMO

The detection and characterization of low-level protein modifications in a complex system without a methodology for modification enrichment is a very challenging task. This study describes a high-resolution LC/MS-based background subtraction methodology for the unbiased detection and identification of acetaminophen-bound proteins formed in incubations with mouse liver microsomes. The microsomal incubations were conducted using both acetaminophen and [(13)C2,(15)N]acetaminophen at a drug concentration of 200 µM. After tryptic digestion and high-resolution LC/MS analysis, data from the two drug treatment groups were each background-subtracted against the other. Thus, peptide signals that were identical in both groups were effectively canceled out, and drug-bound peptide peaks, differing in masses between the groups because of the isotopic mass shift, were retained after background subtraction and became highlighted in the resultant base peak ion chromatograms. Follow-up MS/MS experiments with these drug-bound peptides led to the identification of three acetaminophen-bound proteins: microsomal glutathione S-transferase, oligosaccharyltransferase subunit ribophorin I, and argininosuccinate synthetase. These initial findings demonstrate the utility of the methodology and may shed new light on the mechanism of acetaminophen-induced hepatotoxicity. The approach is potentially applicable to similar tasks of identification of protein modifications in other complex biological systems.


Assuntos
Acetaminofen/metabolismo , Argininossuccinato Sintase/metabolismo , Espectrometria de Massas/métodos , Microssomos Hepáticos/metabolismo , Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Camundongos , Microssomos Hepáticos/enzimologia , Proteínas/química
20.
J Med Chem ; 58(3): 1556-62, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25584393

RESUMO

The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds 15 and 17 further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Prolina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/patologia , Prolina/síntese química , Prolina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA