Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 365(6456)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467194

RESUMO

Twin and family studies have shown that same-sex sexual behavior is partly genetically influenced, but previous searches for specific genes involved have been underpowered. We performed a genome-wide association study (GWAS) on 477,522 individuals, revealing five loci significantly associated with same-sex sexual behavior. In aggregate, all tested genetic variants accounted for 8 to 25% of variation in same-sex sexual behavior, only partially overlapped between males and females, and do not allow meaningful prediction of an individual's sexual behavior. Comparing these GWAS results with those for the proportion of same-sex to total number of sexual partners among nonheterosexuals suggests that there is no single continuum from opposite-sex to same-sex sexual behavior. Overall, our findings provide insights into the genetics underlying same-sex sexual behavior and underscore the complexity of sexuality.

2.
ESC Heart Fail ; 6(4): 764-773, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148414

RESUMO

AIMS: We aimed to investigate whether metabolomic profiling of blood can lead to novel insights into heart failure pathogenesis or improved risk prediction. METHODS AND RESULTS: Mass spectrometry-based metabolomic profiling was performed in plasma or serum samples from three community-based cohorts without heart failure at baseline (total n = 3924; 341 incident heart failure events; median follow-up ranging from 4.6 to 13.9 years). Cox proportional hazard models were applied to assess the association of each of the 206 identified metabolites with incident heart failure in the discovery cohorts Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) (n = 920) and Uppsala Longitudinal Study of Adult Men (ULSAM) (n = 1121). Replication was undertaken in the independent cohort TwinGene (n = 1797). We also assessed whether metabolites could improve the prediction of heart failure beyond established risk factors (age, sex, body mass index, low-density and high-density lipoprotein cholesterol, triglycerides, lipid medication, diabetes, systolic and diastolic blood pressure, blood pressure medication, glomerular filtration rate, smoking status, and myocardial infarction prior to or during follow-up). Higher circulating urobilin and lower sphingomyelin (30:1) were associated with incident heart failure in age-adjusted and sex-adjusted models in the discovery and replication sample. The hazard ratio for urobilin in the replication cohort was estimated to 1.29 per standard deviation unit, 95% confidence interval (CI 1.03-1.63), and for sphingomyelin (30:1) to 0.72 (95% CI 0.58-0.89). Results remained similar after further adjustment for established heart failure risk factors in meta-analyses of all three cohorts. Urobilin concentrations were inversely associated with left ventricular ejection fraction at baseline in the PIVUS cohort (ß = -0.70, 95% CI -1.03 to -0.38). No major improvement in risk prediction was observed when adding the top 2 metabolites (C-index 0.787, 95% CI 0.752-0.823) or nine Lasso-selected metabolites (0.790, 95% CI 0.754-0.826) to a modified Atherosclerosis Risk in Communities heart failure risk score model (0.780, 95% CI 0.745-0.816). CONCLUSIONS: Our metabolomic profiling of three community-based cohorts study identified associations of circulating levels of the haem breakdown product urobilin, and sphingomyelin (30:1), a cell membrane component involved in signal transduction and apoptosis, with incident heart failure.

3.
Bioinformatics ; 35(21): 4478-4479, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086968

RESUMO

MOTIVATION: The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. RESULTS: We present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. AVAILABILITY AND IMPLEMENTATION: http://vsranker.broadinstitute.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Elife ; 82019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30895926

RESUMO

Genetic predictions of height differ among human populations and these differences have been interpreted as evidence of polygenic adaptation. These differences were first detected using SNPs genome-wide significantly associated with height, and shown to grow stronger when large numbers of sub-significant SNPs were included, leading to excitement about the prospect of analyzing large fractions of the genome to detect polygenic adaptation for multiple traits. Previous studies of height have been based on SNP effect size measurements in the GIANT Consortium meta-analysis. Here we repeat the analyses in the UK Biobank, a much more homogeneously designed study. We show that polygenic adaptation signals based on large numbers of SNPs below genome-wide significance are extremely sensitive to biases due to uncorrected population stratification. More generally, our results imply that typical constructions of polygenic scores are sensitive to population stratification and that population-level differences should be interpreted with caution. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).

6.
JAMA Psychiatry ; 76(3): 259-270, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649197

RESUMO

Importance: Individuals with mental disorders often develop comorbidity over time. Past studies of comorbidity have often restricted analyses to a subset of disorders and few studies have provided absolute risks of later comorbidity. Objectives: To undertake a comprehensive study of comorbidity within mental disorders, by providing temporally ordered age- and sex-specific pairwise estimates between the major groups of mental disorders, and to develop an interactive website to visualize all results and guide future research and clinical practice. Design, Setting, and Participants: This population-based cohort study included all individuals born in Denmark between January 1, 1900, and December 31, 2015, and living in the country between January 1, 2000, and December 31, 2016. The analyses were conducted between June 2017 and May 2018. Main Outcomes and Measures: Danish health registers were used to identify mental disorders, which were examined within the broad 10-level International Statistical Classification of Diseases and Related Health Problems, 10th Revision, subchapter groups (eg, codes F00-F09 and F10-F19). For each temporally ordered pair of disorders, overall and lagged hazard ratios and 95% CIs were calculated using Cox proportional hazards regression models. Absolute risks were estimated using competing risks survival analyses. Estimates for each sex were generated. Results: A total of 5 940 778 persons were included in this study (2 958 293 men and 2 982 485 women; mean [SD] age at beginning of follow-up, 32.1 [25.4] years). They were followed up for 83.9 million person-years. All mental disorders were associated with an increased risk of all other mental disorders when adjusting for sex, age, and calendar time (hazard ratios ranging from 2.0 [95% CI, 1.7-2.4] for prior intellectual disabilities and later eating disorders to 48.6 [95% CI, 46.6-50.7] for prior developmental disorders and later intellectual disabilities). The hazard ratios were temporally patterned, with higher estimates during the first year after the onset of the first disorder, but with persistently elevated rates during the entire observation period. Some disorders were associated with substantial absolute risks of developing specific later disorders (eg, 30.6% [95% CI, 29.3%-32.0%] of men and 38.4% [95% CI, 37.5%-39.4%] of women with a diagnosis of mood disorders before age 20 years developed neurotic disorders within the following 5 years). Conclusions and Relevance: Comorbidity within mental disorders is pervasive, and the risk persists over time. This study provides disorder-, sex-, and age-specific relative and absolute risks of the comorbidity of mental disorders. Web-based interactive data visualization tools are provided for clinical utility.

7.
Nat Genet ; 50(11): 1600-1607, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30297966

RESUMO

Common variant heritability has been widely reported to be concentrated in variants within cell-type-specific non-coding functional annotations, but little is known about low-frequency variant functional architectures. We partitioned the heritability of both low-frequency (0.5%≤ minor allele frequency <5%) and common (minor allele frequency ≥5%) variants in 40 UK Biobank traits across a broad set of functional annotations. We determined that non-synonymous coding variants explain 17 ± 1% of low-frequency variant heritability ([Formula: see text]) versus 2.1 ± 0.2% of common variant heritability ([Formula: see text]). Cell-type-specific non-coding annotations that were significantly enriched for [Formula: see text] of corresponding traits were similarly enriched for [Formula: see text] for most traits, but more enriched for brain-related annotations and traits. For example, H3K4me3 marks in brain dorsolateral prefrontal cortex explain 57 ± 12% of [Formula: see text] versus 12 ± 2% of [Formula: see text] for neuroticism. Forward simulations confirmed that low-frequency variant enrichment depends on the mean selection coefficient of causal variants in the annotation, and can be used to predict effect size variance of causal rare variants (minor allele frequency <0.5%).

8.
Artigo em Inglês | MEDLINE | ID: mdl-30185940

RESUMO

Recent epidemiological studies suggest that human exposure to perfluoroalkyl substances (PFASs) may be associated with type 2 diabetes and other metabolic phenotypes. To gain further insights regarding PFASs exposure in humans, we here aimed to characterize the associations between different PFASs and the metabolome. In this cross-sectional study, we investigated 965 individuals from Sweden (all aged 70 years, 50% women) sampled in 2001-2004. PFASs were analyzed in plasma using isotope-dilution ultra-pressure liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Non-target metabolomics profiling was performed in plasma using UPLC coupled to time-of-flight mass spectrometry (UPLC-QTOFMS) operated in positive electrospray mode. Multivariate linear regression analysis was used to investigate associations between circulating levels of PFASs and metabolites. In total, 15 metabolites, predominantly from lipid pathways, were associated with levels of PFASs following adjustment for sex, smoking, exercise habits, education, energy, and alcohol intake, after correction for multiple testing. Perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were strongly associated with multiple glycerophosphocholines and fatty acids including docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). We also found that the different PFASs evaluated were associated with distinctive metabolic profiles, suggesting potentially different biochemical pathways in humans.

9.
Nat Commun ; 9(1): 3391, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140000

RESUMO

Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia.

11.
Nat Commun ; 9(1): 2606, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973585

RESUMO

Lipoprotein(a), Lp(a), is a modified low-density lipoprotein particle that contains apolipoprotein(a), encoded by LPA, and is a highly heritable, causal risk factor for cardiovascular diseases that varies in concentrations across ancestries. Here, we use deep-coverage whole genome sequencing in 8392 individuals of European and African ancestry to discover and interpret both single-nucleotide variants and copy number (CN) variation associated with Lp(a). We observe that genetic determinants between Europeans and Africans have several unique determinants. The common variant rs12740374 associated with Lp(a) cholesterol is an eQTL for SORT1 and independent of LDL cholesterol. Observed associations of aggregates of rare non-coding variants are largely explained by LPA structural variation, namely the LPA kringle IV 2 (KIV2)-CN. Finally, we find that LPA risk genotypes confer greater relative risk for incident atherosclerotic cardiovascular diseases compared to directly measured Lp(a), and are significantly associated with measures of subclinical atherosclerosis in African Americans.

12.
Am J Hum Genet ; 102(6): 1204-1211, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861106

RESUMO

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.

13.
Sci Rep ; 8(1): 8691, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875472

RESUMO

Insulin resistance (IR) predisposes to type 2 diabetes and cardiovascular disease but its causes are incompletely understood. Metabolic challenges like the oral glucose tolerance test (OGTT) can reveal pathogenic mechanisms. We aimed to discover associations of IR with metabolite trajectories during OGTT. In 470 non-diabetic men (age 70.6 ± 0.6 years), plasma samples obtained at 0, 30 and 120 minutes during an OGTT were analyzed by untargeted liquid chromatography-mass spectrometry metabolomics. IR was assessed with the hyperinsulinemic-euglycemic clamp method. We applied age-adjusted linear regression to identify metabolites whose concentration change was related to IR. Nine trajectories, including monounsaturated fatty acids, lysophosphatidylethanolamines and a bile acid, were significantly associated with IR, with the strongest associations observed for medium-chain acylcarnitines C10 and C12, and no associations with L-carnitine or C2-, C8-, C14- or C16-carnitine. Concentrations of C10- and C12-carnitine decreased during OGTT with a blunted decline in participants with worse insulin resistance. Associations persisted after adjustment for obesity, fasting insulin and fasting glucose. In mouse 3T3-L1 adipocytes exposed to different acylcarnitines, we observed blunted insulin-stimulated glucose uptake after treatment with C10- or C12-carnitine. In conclusion, our results identify medium-chain acylcarnitines as possible contributors to IR.

14.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795570

RESUMO

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Assuntos
Doença de Crohn/genética , Predisposição Genética para Doença/genética , Judeus/genética , Doenças Raras/genética , Algoritmos , Doença de Crohn/epidemiologia , Genética Populacional , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Modelos Genéticos , Epidemiologia Molecular , Polimorfismo de Nucleotídeo Único , Doenças Raras/epidemiologia
15.
Nature ; 550(7675): 239-243, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022581

RESUMO

Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.


Assuntos
Perfilação da Expressão Gênica , Variação Genética/genética , Especificidade de Órgãos/genética , Teorema de Bayes , Feminino , Genoma Humano/genética , Genômica , Genótipo , Humanos , Masculino , Modelos Genéticos , Análise de Sequência de RNA
17.
J Med Genet ; 54(9): 598-606, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28756411

RESUMO

BACKGROUND: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement 'hotspot' loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained. OBJECTIVE: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype. METHODS: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls. RESULTS: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10-6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10-12, OR 7.45, 95% CI 4.20-13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10-3,OR 2.85, 95% CI 1.62-4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls. CONCLUSIONS: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.


Assuntos
Deleção Cromossômica , Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Epilepsia Rolândica/genética , Estudos de Casos e Controles , Estudos de Coortes , Variações do Número de Cópias de DNA , Expressão Gênica , Estudos de Associação Genética , Humanos
18.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28461624

RESUMO

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Assuntos
Doença das Coronárias/genética , Doença das Coronárias/prevenção & controle , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fumar/efeitos adversos , Fumar/epidemiologia
19.
Heart ; 103(16): 1278-1285, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28255100

RESUMO

OBJECTIVE: The comprehensive assaying of low-molecular-weight compounds, for example, metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify biomarkers for MI and evaluate their involvement in the pathogenesis of MI. METHODS AND RESULTS: Using three independent, prospective cohorts (KORA S4, KORA S2 and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified metabolites associated with incident MI (266 cases). We also investigated the association between the metabolites and high-sensitivity C reactive protein (hsCRP) to understand the relation between these metabolites and systemic inflammation. Out of 140 metabolites, 16 were nominally associated (p<0.05) with incident MI in KORA S4. Three metabolites, arginine and two lysophosphatidylcholines (LPC 17:0 and LPC 18:2), were selected as biomarkers via a backward stepwise selection procedure in the KORA S4 and were significant (p<0.0003) in a meta-analysis comprising all three studies including KORA S2 and AGES-REFINE. Furthermore, these three metabolites increased the predictive value of the Framingham risk score, increasing the area under the receiver operating characteristic score in KORA S4 (from 0.70 to 0.78, p=0.001) and AGES-REFINE study (from 0.70 to 0.76, p=0.02), but was not observed in KORA S2. The metabolite biomarkers attenuated the association between hsCRP and MI, indicating a potential link to systemic inflammatory processes. CONCLUSIONS: We identified three metabolite biomarkers, which in combination increase the predictive value of the Framingham risk score. The attenuation of the hsCRP-MI association by these three metabolites indicates a potential link to systemic inflammation.


Assuntos
Biomarcadores/metabolismo , Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Medição de Risco/métodos , Adulto , Idoso , Progressão da Doença , Feminino , Alemanha/epidemiologia , Humanos , Incidência , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Inquéritos e Questionários
20.
Nat Neurosci ; 19(12): 1563-1565, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694993

RESUMO

Disruptive, damaging ultra-rare variants in highly constrained genes are enriched in individuals with neurodevelopmental disorders. In the general population, this class of variants was associated with a decrease in years of education (YOE). This effect was stronger among highly brain-expressed genes and explained more YOE variance than pathogenic copy number variation but less than common variants. Disruptive, damaging ultra-rare variants in highly constrained genes influence the determinants of YOE in the general population.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Educação , Humanos , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA