RESUMO
The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@µsphere system demonstrated a uniform size of about 180 µm and a highly porous structure with pore sizes between 20 and 40 µm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.
RESUMO
BACKGROUND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element binding transcription factor 1 (SREBP-1) and promotes lipogenesis in ALD. Overexpression of fibroblast growth factor 21 (FGF21) in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10 (SRSF10), which generates exon 7 inclusion in lipin 1, and triggers concurrent induction of lipogenic regulators-lipin 1ß and SREBP-1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mTORC1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that 1) The regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; 2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and 3) Targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.
RESUMO
BACKGROUND: Neurofilament light protein (NfL) has been proven to be a sensitive biomarker for Huntington's disease (HD). However, these studies did not include HD patients at advanced stages or with larger CAG repeats (>50), leading to a knowledge gap of the characteristics of NfL. METHODS: Serum NfL (sNfL) levels were quantified using an ultrasensitive immunoassay. Participants were assessed by clinical scales and 7.0 T magnetic resonance imaging. Longitudinal samples and clinical data were obtained. RESULTS: Baseline samples were available from 110 controls, 90 premanifest HD (pre-HD) and 137 HD individuals. We found levels of sNfL significantly increased in HD compared to pre-HD and controls (both P < 0.0001). The increase rates of sNfL were differed by CAG repeat lengths. However, there was no difference in sNfL levels in manifest HD from early to late stages. In addition, sNfL levels were associated with cognitive measures in pre-HD and manifest HD group, respectively. The increased levels of sNfL were also closely related to microstructural changes in white matter. In the longitudinal analysis, baseline sNfL did not correlate with subsequent clinical function decline. Random forest analysis revealed that sNfL had good power for predicting disease onset. CONCLUSIONS: Although sNfL levels are independent of disease stages in manifest HD, it is still an optimal indicator for predicting disease onset and has potential use as a surrogate biomarker of treatment effect in clinical trials. © 2023 International Parkinson and Movement Disorder Society.
RESUMO
Biochar has been recognized as a promising sustainable adsorbent for removing pollutants from wastewater. In this study, two natural minerals, attapulgite (ATP) and diatomite (DE) were co-ball milled with sawdust biochar (pyrolyzed at 600 °C for 2 h) at ratios of 10-40% (w/w) and examined the ability of methylene blue (MB) to be removed from aqueous solutions by them. All the mineral-biochar composites sorbed more MB than both ball milled biochar (MBC) and ball milled mineral alone, indicating there was a positive synergy in co-ball milling biochar with these minerals. The 10% (w/w) composites of ATP:BC (MABC10%) and DE:BC (MDBC10%) had the greatest MB maximum adsorption capacities (modeled by Langmuir isotherm modeling) and were 2.7 and 2.3 times that of MBC, respectively. The adsorption capacities of MABC10% and MDBA10% were 183.0 mg g-1 and 155.0 mg g-1 at adsorption equilibrium, respectively. These improvements can be owing to the greater content of oxygen-containing functional groups and higher cation exchange capacity of the MABC10% and MDBC10% composites. In addition, the characterization results also reveal that pore filling, π-π stacking interactions, hydrogen bonding of hydrophilic functional groups, and electrostatic adsorption of oxygen-containing functional groups also contribute prominently to the adsorption of MB. This, along with the greater MB adsorption at higher pH and ionic strengths, suggests the roles in MB adsorption was an electrostatic interaction and an ion exchange mechanism. These results demonstrate that mineral-biochar composites prepared by co-ball milling treatment were promising sorbents of ionic contaminants for environmental applications.
RESUMO
MXenes are considered as an emerging class of two-dimensional (2D) adsorbent for various environmental applications. In this work, two different morphologies of Ti3C2Tx MXene (multilayer (ML-Ti3C2Tx) and delaminated titanium carbide (DL-Ti3C2Tx)) were prepared through mild in situ HF etching and further delamination. The structural differences between the two were explored with a focus on their effects on the performance and mechanism of removing heavy metals from water. In comparison to ML-Ti3C2Tx, DL-Ti3C2Tx had more oxygen-containing functional groups, higher specific surface area (19.713 vs. 8.243 m2/g), larger pore volume (0.135 vs. 0.040 cm3/g), higher maximum Pb(II) adsorption capacity (77.0 vs. 56.68 mg/g), but lower maximum Cu(II) adsorption capacity (23.08 vs. 55.46 mg/g). Further investigation revealed that the removal of Pb(II) by the MXenes was mainly controlled through electrostatic attraction and surface complexation mechanisms, while Cu(II) was removed mainly through surface reduction by Ti-related groups. Because delamination of ML-Ti3C2Tx increased the surface area and surface functional groups, DL-Ti3C2Tx became a better sorbent for Pb(II) in water. During sonication, however, delamination inevitably led to partial oxidation of Ti3C2Tx nanosheets and thus weakened the reducing ability of DL-Ti3C2Tx for Cu(II) in water. Nevertheless, both ML- and DL-Ti3C2Tx not only exhibited excellent heavy metal adsorption capacity under different solution conditions, but also showed good reusability. Findings of this study indicate that Ti3C2Tx MXenes are promising adsorbents for treating heavy metal pollutants in water.
RESUMO
Acute liver failure (ALF) is a life-threatening medical condition, characterized by rapidly progressive hepatic dysfunction, coagulopathy and hepatic encephalopathy in patients without chronic liver disease, while acute-on-chronic liver failure (ACLF) occurs in patients with existing chronic liver disease. ALF and ACLF are often associated with multiple organ failure and a high short-term mortality. In this review, we briefly discuss the causes and pathogenesis of ALF and ACLF, the current options available for the treatment of both deadly maladies and interleukin-22 (IL-22), a novel promising drug that may have great therapeutic potential for ALF and ACLF treatment. IL-22 is a cytokine produced by immune cells but mainly targets epithelial cells including hepatocytes. IL-22 has been shown to protect against organ damage and reduce bacterial infection in many preclinical models and several clinical trials including alcohol-associated hepatitis. The potential application of IL-22 for the treatment of ALF and ACLF is also elaborated.
RESUMO
Background: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver diseases worldwide. There is a pressing clinical need to identify potential therapeutic targets for NASH treatment. Thioredoxin interacting protein (Txnip) is a stress responsive gene that has been implicated in the pathogenesis of NASH, but its exact role is not fully understood. Here, we investigated the liver- and gene-specific role of Txnip and its upstream/downstream signaling in the pathogenesis of NASH. Methods and Results: Using four independent NASH mouse models, we found that TXNIP protein abnormally accumulated in NASH mouse livers. A decrease in E3 ubiquitin ligase NEDD4L resulted in impaired TXNIP ubiquitination and its accumulation in the liver. TXNIP protein levels were positively correlated with that of CHOP, a major regulator of ER stress-mediated apoptosis, in NASH mouse liver. Moreover, gain- and loss-of-function studies showed that TXNIP increased protein not mRNA levels of Chop both in vitro and in vivo. Mechanistically, the C-terminus of TXNIP associated with the N-terminus of the α-helix domain of CHOP and decreased CHOP ubiquitination, thus increasing the stability of CHOP protein. Lastly, selective knockdown of Txnip by adenovirus-mediated shRNA (not targets Txnip antisense lncRNA) delivery in the livers of both young and aged NASH mice suppressed the expression of CHOP and its downstream apoptotic pathway, and ameliorated NASH by reducing hepatic apoptosis, inflammation, and fibrosis. Conclusions: Our study revealed a pathogenic role of hepatic TXNIP in NASH and identified a novel NEDD4L-TXNIP-CHOP axis in the pathogenesis of NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Apoptose , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Cancer immunotherapy is revolutionizing oncology. The marriage of nanotechnology and immunotherapy offers a great opportunity to amplify antitumor immune response in a safe and effective manner. Here, electrochemically active Shewanella oneidensis MR-1 can be applied to produce FDA-approved Prussian blue nanoparticles on a large-scale. We present a mitochondria-targeting nanoplatform, MiBaMc, which consists of Prussian blue decorated bacteria membrane fragments having further modifications with chlorin e6 and triphenylphosphine. We find that MiBaMc specifically targets mitochondria and induces amplified photo-damages and immunogenic cell death of tumor cells under light irradiation. The released tumor antigens subsequently promote the maturation of dendritic cells in tumor-draining lymph nodes, eliciting T cell-mediated immune response. In two tumor-bearing mouse models using female mice, MiBaMc triggered phototherapy synergizes with anti-PDL1 blocking antibody for enhanced tumor inhibition. Collectively, the present study demonstrates biological precipitation synthetic strategy of targeted nanoparticles holds great potential for the preparation of microbial membrane-based nanoplatforms to boost antitumor immunity.
Assuntos
Ferrocianetos , Inibidores de Checkpoint Imunológico , Feminino , Animais , Camundongos , Anticorpos Bloqueadores , ImunoterapiaRESUMO
Background: Massive cerebral infarction (MCI) causes severe neurological deficits, coma and can even result in death. Here, we identified hub genes and pathways after MCI by analyzing microarray data from a murine model of ischemic stroke and identified potential therapeutic agents for the treatment of MCI. Methods: Microarray expression profiling was performed using the GSE28731 and GSE32529 datasets from the Gene Expression Omnibus (GEO) database. Data from a sham group (n = 6 mice) and a middle cerebral artery occlusion (MCAO) group (n = 7 mice) were extracted to identify common differentially expressed genes (DEGs). After identifying gene interactions, we generated a protein-protein interaction (PPI) network with Cytoscape software. Then, the MCODE plug-in in Cytoscape was used to determine key sub-modules according to MCODE scores. Enrichment analyses were then conducted on DEGs in the key sub-modules to evaluate their biological functions. Furthermore, hub genes were identified by generating the intersections of several algorithms in the cytohubba plug-in; these genes were then verified in other datasets. Finally, we used Connectivity MAP (CMap) to identify potential agents for MCI therapy. Results: A total of 215 common DEGs were identified and a PPI network was generated with 154 nodes and 947 edges. The most significant key sub-module had 24 nodes and 221 edges. Gene ontology (GO) analysis showed that the DEGs in this sub-module showed enrichment in inflammatory response, extracellular space and cytokine activity in terms of biological process, cellular component and molecular function, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that TNF signaling was the most enriched pathway. Myd88 and Ccl3 were identified as hub genes and TWS-119 was identified as the most potential therapeutic agent by CMap. Conclusions: Bioinformatic analysis identified two hub genes (Myd88 and Ccl3) for ischemic injury. Further analysis identified TWS-119 as the best potential candidate for MCI therapy and that this target may be associated with TLR/MyD88 signaling.
RESUMO
Medical imaging is an important tool for accurate medical diagnosis, while state-of-the-art image reconstruction algorithms raise critical challenges in massive data processing for high-speed and high-quality imaging. Here, we present a memristive image reconstructor (MIR) to greatly accelerate image reconstruction with discrete Fourier transformation (DFT) by computing-in-memory (CIM) with memristor arrays. A high-accuracy quasi-analogue mapping (QAM) method and generic complex matrix transfer (CMT) scheme was proposed to improve the mapping precision and transfer efficiency, respectively. High-fidelity magnetic resonance imaging (MRI) and computed tomography (CT) image reconstructions were demonstrated, achieving software-equivalent qualities and DICE scores after segmentation with nnU-Net algorithm. Remarkably, our MIR exhibited 153× and 79× improvements in energy efficiency and normalized image reconstruction speed, respectively, compared to graphics processing unit (GPU). This work demonstrates MIR as a promising high-fidelity image reconstruction platform for future medical diagnosis, and also largely extends the application of memristor-based CIM beyond artificial neural networks.
Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Software , Tomografia Computadorizada por Raios XRESUMO
INTRODUCTION: High-mobility group box 1 protein (HMGB1) is extensively involved in causing ischemic stroke, pathological damage of ischemic brain injury, and neural tissue repair after ischemic brain injury. However, the precise role of HMGB1 in ischemic stroke remains to be elucidated. METHODS: Comprehensive literature search and narrative review to summarize the current field of HMGB1 in cerebral ischemic based on the basic structure, structural modification, and functional roles of HMGB1 described in the literature. RESULTS: Studies have exhibited the crucial roles of HMGB1 in cell death, immunity and inflammation, thrombosis, and remodeling and repair. HMGB1 released after cerebral infarction is extensively involved in the pathological injury process in the early stage of cerebral infarction, whereas it is involved in the promotion of brain tissue repair and remodeling in the late stage of cerebral infarction. HMGB1 plays a neurotrophic role in acute white matter stroke, whereas it causes sustained activation of inflammation and plays a damaging role in chronic white matter ischemia. CONCLUSIONS: HMGB1 plays a complex role in cerebral infarction, which is related to not only the modification of HMGB1 and bound receptors but also different stages and subtypes of cerebral infarction. future studies on HMGB1 should investigate the spatial and temporal dynamics of HMGB1 after cerebral infarction. Moreover, future studies on HMGB1 should attempt to integrate different stages and infarct subtypes of cerebral infarction.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , Proteína HMGB1 , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Lesões Encefálicas/complicações , Infarto Cerebral , Inflamação , AVC Isquêmico/complicações , Acidente Vascular Cerebral/complicaçõesRESUMO
Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.
Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Carvão Vegetal , Radicais LivresRESUMO
Magnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni2Mo3O8, where Ni2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations.
RESUMO
Extracorporeal membrane oxygenation (ECMO) is a life support system used in the treatment of severe respiratory and circulatory failure. High shear stress caused by the high rotational speed of centrifugal blood pumps can cause hemolysis and platelet activation, which are among the major factors leading to the complications of the ECMO system. In this study, a novel blood pump named rotary displacement blood pump (RDBP), which can considerably reduce rotational speed and shear stress while ensuring the normal pressure flow relationship, was proposed. We employed computational fluid dynamics (CFD) analysis to investigate the performance of RDBP under adult ECMO support operating conditions (5 L/min with 350 mmHg). The efficiency and H-Q curves of the RDBP were calculated to evaluate its hydraulic performance, and pressure, flow patterns, and shear stress distribution were analyzed to estimate the hemodynamic characteristics in the pump. In addition, the modified index of hemolysis (MIH) was calculated for the RDBP based on a Eulerian approach. The hydraulic efficiency of the RDBP was 47.28%. The velocity distribution of flow field in the pump was relatively uniform. Most of the liquid (more than 75%) in the pump was exposed to low scale shear stress (<1 Pa), which was close to normal physiological conditions. The gap area was the main distribution location of high scale shear stress. The high wall shear stress (>9 Pa) volume fraction of the RDBP was small and located in the boundary areas between the rotor's edge and the housing. The MIH value of the RDBP was 9.87 ± 0.93 (mean ± SD). The RDBP can achieve better hydraulic efficiency and hemodynamic performance at lower rotational speed. The design of this novel pump is expected to provide a new direction for developing a blood pump for ECMO.
RESUMO
The growing computational demand in artificial intelligence calls for hardware solutions that are capable of in situ machine learning, where both training and inference are performed by edge computation. This not only requires extremely energy-efficient architecture (such as in-memory computing) but also memory hardware with tunable properties to simultaneously meet the demand for training and inference. Here we report a duplex device structure based on a ferroelectric field-effect transistor and an atomically thin MoS2 channel, and realize a universal in-memory computing architecture for in situ learning. By exploiting the tunability of the ferroelectric energy landscape, the duplex building block demonstrates an overall excellent performance in endurance (>1013), retention (>10 years), speed (4.8 ns) and energy consumption (22.7 fJ bit-1 µm-2). We implemented a hardware neural network using arrays of two-transistors-one-duplex ferroelectric field-effect transistor cells and achieved 99.86% accuracy in a nonlinear localization task with in situ trained weights. Simulations show that the proposed device architecture could achieve the same level of performance as a graphics processing unit under notably improved energy efficiency. Our device core can be combined with silicon circuitry through three-dimensional heterogeneous integration to give a hardware solution towards general edge intelligence.
RESUMO
Citrin deficiency (CD) is an inborn error of metabolism caused by loss-of-function of the mitochondrial aspartate/glutamate transporter, CITRIN, which is involved in both the urea cycle and malate-aspartate shuttle. Patients with CD develop hepatosteatosis and hyperammonemia but there is no effective therapy for CD. Currently, there are no animal models that faithfully recapitulate the human CD phenotype. Accordingly, we generated a CITRIN knockout HepG2 cell line using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 genome editing technology to study metabolic and cell signaling defects in CD. CITRIN KO cells showed increased ammonia accumulation, higher cytosolic ratio of reduced versus oxidized form of nicotinamide adenine dinucleotide (NAD) and reduced glycolysis. Surprisingly, these cells showed impaired fatty acid metabolism and mitochondrial activity. CITRIN KO cells also displayed increased cholesterol and bile acid metabolism resembling those observed in CD patients. Remarkably, normalizing cytosolic NADH:NAD+ ratio by nicotinamide riboside increased glycolysis and fatty acid oxidation but had no effect on the hyperammonemia suggesting the urea cycle defect was independent of the aspartate/malate shuttle defect of CD. The correction of glycolysis and fatty acid metabolism defects in CITRIN KO cells by reducing cytoplasmic NADH:NAD+ levels suggests this may be a novel strategy to treat some of the metabolic defects of CD and other mitochondrial diseases.
Assuntos
Citrulinemia , Hiperamonemia , Humanos , Citrulinemia/genética , Citrulinemia/metabolismo , NAD/metabolismo , Malatos , Ácido Aspártico/metabolismo , Hiperamonemia/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Hepatócitos/metabolismo , Glicólise , Ureia/metabolismo , Ácidos GraxosRESUMO
Upward social comparison on Social Network Sites (SNS) might be positively related to online compulsive buying; however, there is little understanding of the mechanism of this relationship. In this study, we explored the effect of upward social comparison on SNS on online compulsive buying, and whether this effect is mediated by materialism and envy. A total of 568 Chinese undergraduates (mean age = 19.58 years, SD = 1.43) were recruited to complete a survey that included Upward social comparison on SNS Scale, Materialism Scale, Envy Scale, and Online compulsive buying Scale. The results revealed that upward social comparison was positively linked to online compulsive buying. Additionally, materialism and envy completely mediated this relationship. Our findings suggest that upward social comparison has a positive influence on college students' online compulsive buying and that this influence is formed through a combination of cognitive factors (materialism) and affective factors (envy). This discovery not only clarifies the underlying mechanism but also proposes a potential way of alleviating online compulsive buying.
RESUMO
Hemolysin-coregulated protein 1 (Hcp1) is an effector released by the type VI secretion system (T6SS) in certain pathogenic strains of Escherichia coli (E. coli) that causes apoptosis and contributes to the development of meningitis. The exact toxic consequences of Hcp1 and whether it intensifies the inflammatory response by triggering pyroptosis are yet unknown. Here, utilizing the CRISPR/Cas9 genome editing method, we removed the gene expressing Hcp1 from wild-type E. coli W24 and examined the impact of Hcp1 on E. coli virulence in Kunming (KM) mice. It was found that Hcp1-sufficient E. coli was more lethal, exacerbating acute liver injury (ALI) and acute kidney injury (AKI) or even systemic infections, structural organ damage, and inflammatory factor infiltration. These symptoms were alleviated in mice infected with W24Δhcp1. Additionally, we investigated the molecular mechanism by which Hcp1 worsens AKI and found that pyroptosis is involved, manifested as DNA breaks in many renal tubular epithelial cells. Genes or proteins closely related to pyroptosis are abundantly expressed in the kidney. Most importantly, Hcp1 promotes the activation of the NLRP3 inflammasome and the expression of active caspase-1, thereby cleaving GSDMD-N and accelerating the release of active IL-1ß and ultimately leading to pyroptosis. In conclusion, Hcp1 enhances the virulence of E. coli, aggravates ALI and AKI, and promotes the inflammatory response; moreover, Hcp1-induced pyroptosis is one of the molecular mechanisms of AKI.
Assuntos
Injúria Renal Aguda , Escherichia coli , Camundongos , Animais , Escherichia coli/metabolismo , Virulência , Piroptose , Proteínas Hemolisinas , Inflamassomos/metabolismo , Injúria Renal Aguda/patologia , Inflamação/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genéticaRESUMO
The pathogenesis of antibodies in severe alcoholic hepatitis (SAH) remains unknown. We sought to determine if there was antibody deposition in SAH livers and whether antibodies extracted from SAH livers were cross-reactive against both bacterial antigens and human proteins. We analyzed immunoglobulins (Ig) in explanted livers from SAH patients (n=45) undergoing liver transplantation and tissue from corresponding healthy donors (HD, n=10) and found massive deposition of IgG and IgA isotype antibodies associated with complement fragment C3d and C4d staining in ballooned hepatocytes in SAH livers. Ig extracted from SAH livers, but not patient serum exhibited hepatocyte killing efficacy in an antibody-dependent cell-mediated cytotoxicity (ADCC) assay. Employing human proteome arrays, we profiled the antibodies extracted from explanted SAH, alcoholic cirrhosis (AC), nonalcoholic steatohepatitis (NASH), primary biliary cholangitis (PBC), autoimmune hepatitis (AIH), hepatitis B virus (HBV), hepatitis C virus (HCV) and HD livers and found that antibodies of IgG and IgA isotypes were highly accumulated in SAH and recognized a unique set of human proteins as autoantigens. The use of an E. coli K12 proteome array revealed the presence of unique anti- E. coli antibodies in SAH, AC or PBC livers. Further, both Ig and E. coli captured Ig from SAH livers recognized common autoantigens enriched in several cellular components including cytosol and cytoplasm (IgG and IgA), nucleus, mitochondrion and focal adhesion (IgG). Except IgM from PBC livers, no common autoantigen was recognized by Ig and E. coli captured Ig from AC, HBV, HCV, NASH or AIH suggesting no cross-reacting anti- E. coli autoantibodies. The presence of cross-reacting anti-bacterial IgG and IgA autoantibodies in the liver may participate in the pathogenesis of SAH.