Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Biomed Mater ; 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996052

RESUMO

In the past decade, multifunctional peptides have attracted increasing attention in the biomedical field. Peptides possess many impressive advantages, such as high penetration ability, low cost, and etc. However, the short half-life and instability of peptides limit their application. In this study, a poly-peptide drug loading system (called HKMA composite) was designed based on the different functionalities of four peptides. The peptide compositions of HKMA composite from N-terminal to C-terminal were HCBP1, KLA, MMP-2-cleavable peptide and ABD. The targeting and lethality of HKMA to NSCLC cell line H460 sphere cells and the half-life of the system were measured in vivo. The results showed that the HKMA composite had a long half-life and specific killing effect on H460 sphere cells in vitro and in vivo. Our result proposed smart peptide drug loading system and provided a potential methodology for effective cancer treatment.

2.
J Microbiol Biotechnol ; 32(1)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866126

RESUMO

Steroids are a class of compounds with cyclopentane polyhydrophenanthrene as the parent nucleus, which usually have unique biological and pharmacological activities. Most of the biosynthesis of steroids is completed by a series of enzymatic reactions starting from cholesterol. Synthetic biology can be used to synthesize cholesterol in engineered microorganisms, but the production of cholesterol is too low to further produce other high-value steroids as the raw material and precursor. In this work, combinational strategies were established to increase the production of cholesterol in engineered Saccharomyces cerevisiae RH6829. The basic medium for high cholesterol production was selected by screening 8 kinds of culture media. Single-factor optimization of the carbon source and nitrogen source of the culture medium, and the addition of calcium ions, zinc ions and citric acid further increased the cholesterol production to 192.53 mg/L. On the 5-L bioreactor, through the establishment of glucose and citric acid feeding strategies and dissolved oxygen regulation strategies, the cholesterol production was further increased to 339.87 mg/L, which was 734 % higher than that in the original medium. This is the highest titer of cholesterol produced by microorganisms currently reported. The fermentation program has also been conducted in a 50-L bioreactor to prove its stability and feasibility.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34875981

RESUMO

Occupational ApplicationsHeavy deadlifting is used as a screening tool or training protocol for recruitment and retention in physically-demanding occupations, especially in the military. Spinal loads experienced during heavy deadlifts, particularly shearing forces, are well above recommended thresholds for lumbar spine injury in occupational settings. Although members of the noted occupation likely have stronger musculoskeletal systems compared to the general population, experiencing shearing forces that are 2 to 4 times larger than the threshold of injury, particularly under repetitive deadlift, may transform a screening tool or training protocol to an occupationally-harmful physical activity.Technical AbstractBackground: Low back pain is a significant problem and one of the primary musculoskeletal conditions affecting active duty service members. There is a need to comprehensively assess the effects of repetitive deadlifts as a physical training modality on lumbar spine loads and the potential mechanisms involved in lumbosacral injuries among soldiers. PURPOSE: The purpose of this narrative review is to summarize studies of low back biomechanics during repetitive deadlifts as used in training programs to improve lifting capacity. METHODS: PubMed and Google Scholar were searched for studies of lifting that met our inclusion and exclusion criteria. Only full text articles in English were included, and their reference lists were further searched. RESULTS: Heavy deadlifts can result in larger compressive and shearing spinal loads that range from 5 - 18 kN, and 1.3 - 3.2 kN, respectively. No studies of lower back biomechanics during repetitive deadlifts were found. However, findings of studies that investigated lower back biomechanics during other types of repetitive lifting suggest a high likelihood for adverse changes in lower back biomechanics that can increase risk of lower back injury. CONCLUSION: Repetitive deadlifting is increasingly implemented as a training modality to develop maximal lifting capacities required in military occupations. Further research is needed to understand the effects of such a training modality on lower back biomechanics and risk of injury.

4.
Lancet Reg Health West Pac ; 16: 100284, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34881371

RESUMO

Background: China's three inactivated enterovirus A71 (EV-A71) vaccines are the first and currently world's only EV-A71 vaccines approved by a national regulatory authority and used to prevent EV-A71 associated diseases. The three vaccines vary by vaccine strain, manufacturing cell substrate, and antigen dose, but no head-to-head comparisons of these vaccines have been done. We compared immunogenicity of the vaccines in children 6-35 months old. Methods: We recruited healthy children aged 6-35 months who lived in a study site county into a multicentre, open-label, non-inferiority, three-group, randomised controlled trial that was conducted in five counties in China. Enrolled children were randomly assigned (1:1:1) to receive two doses of one of the three EV-A71 vaccines. The primary outcome was the proportion of children with EV-A71 neutralizing antibody seroconversion 4 weeks after the second dose; a secondary outcome was adverse events in the 4 weeks after each dose. Analyses of immunogenicity included all children who completed the study (per-protocol analysis). Safety analysis included all children completed safety follow-up after at least one. We used a 10% margin to establish non-inferiority. This trial was registered on a World Health Organization platform: Chinese Clinical Trial Registry (ChiCTR1900026663). Findings: 1631 children were assessed for eligibility between Nov 4 and Nov 20, 2019. Of 1500 (92%) enrolled children, 500 were assigned to vaccine group A, B, or C; 483 in group A,484 in group B, and 487 in group C completed the study. Before dose one, the seropositive rates in groups A, B, and C were 9.7%, 7.2%, and 7.0%. Four weeks after the second dose, seroconversion rates of groups A, B, and C were 98.8%, 99.4% and 99.8% - mutually non-inferior in all two-group comparisons. There were no serious adverse events in any group and no evidence of a difference among the three groups in the incidence of local adverse event or systemic adverse event. Fever was the most common adverse event. All children with reported adverse events recovered. Interpretation: Non-inferior and high seroconversion rates and equivalent safety of three EV-A71 vaccines supports use any of these vaccines to prevent EV-A71-associated diseases. These results may be useful for regulators, vaccine policy makers, and immunization programmes in China and in countries where EV-A71 is endemic.

5.
Plant Biotechnol J ; 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919780

RESUMO

Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.

6.
Food Nutr Res ; 652021.
Artigo em Inglês | MEDLINE | ID: mdl-34908920

RESUMO

Background: Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. Objective: To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. Methods: The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. Results: The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. Conclusion: Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.

7.
Front Genet ; 12: 677650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925435

RESUMO

In our research, we screened 1,495 documents, compiled the whole-exome sequencing data of several studies, formed a data set including 92 observations of RRDLBCL (Relapsed and refractory diffuse large B-cell lymphoma), and performed association analysis on the high-frequency mutations among them. The most common mutations in the data set include TTN, KMT2D, TP53, IGLL5, CREBBP, BCL2, MYD88, and SOCS1 etc. Among these, CREBBP, KMT2D, and BCL2 have a strong association with each other, and SOCS1 has a strong association with genes such as STAT6, ACTB, CIITA, ITPKB, and GNA13. TP53 lacks significant associations with most genes. Through SOM clustering, expression-level analysis and protein interaction analysis of common gene mutations, we believe that RRDLBCL can be divided into five main types. We tested the function of the model and described the clinical characteristics of each subtype through a targeted sequencing RRDLBCL cohort of 96 patients. The classification is stated as follows: 1) JAK-STAT-related type: including STAT6, SOCS1, CIITA, etc. The genetic lineage is similar to PMBL and cHL. Retrospective analysis suggests that this subtype responds poorly to induction therapy (R-CHOP, p < 0.05). 2) BCL-CREBBP type: Epigenetic mutations such as KMT2D and CREBBP are more common in this type, and are often accompanied by BCL2 and EZH2 mutations. 3) MCD type: including MYD88 and CD79B, PIM1 is more common in this subtype. 4) TP53 mutation: TP53 mutant patients, which suggests the worst prognosis (p < 0.05) and worst response to CART treatment. 5) Undefined type (Sparse item type): Major Genetic Change Lacking Type, which has a better prognosis and better response to CART treatment. We also reviewed the literature from recent years concerning the previously mentioned common gene mutations.

8.
Food Sci Nutr ; 9(12): 6720-6727, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925801

RESUMO

A small granule starch from sand rice (Agriophyllum squarrosum) was subjected to heat-moisture treatment (HMT) at different moisture contents (MCs,15%-30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short-range and crystalline structure) with unchanged granule morphology. Nonetheless, a further elevated MC (>20%) gradually destroyed the granule morphology and starch orders. Also, HMT gradually vanished the lamellar structure as MC increased during HMT. These structural evolutions in HMT-modified starch resulted in greater thermal stability, higher pasting temperature, lower pasting viscosity and weakened digestibility. Particularly, HMT applied directly in sand rice starch at 20% MC obtained the highest amount of SDS and RS (23.6%), which was 2.2-fold higher than that of native starch. Therefore, the small granule sand rice starch can be modulated by HMT through controlled MC to expand their application range in food production.

10.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835591

RESUMO

We study how to enhance the transverse magneto-optical Kerr effect (TMOKE) of ultra-thin magnetic dielectric films through the excitation of strong magnetic resonances on metasurface with a metal nanowire array stacked above a metal substrate with an ultra-thin magnetic dielectric film spacer. The plasmonic hybridizations between the Au nanowires and substrate result in magnetic resonances. The periodic arrangement of the Au nanowires can excite propagating surface plasmon polaritons (SPPs) on the metal surface. When the SPPs and the magnetic resonances hybridize, they can strongly couple to form two strong magnetic resonances, which are explained by a coupled oscillator model. Importantly, benefitting from the strong magnetic resonances, we can achieve a large TMOKE signal up to 26% in the ultra-thin magnetic dielectric film with a thickness of only 30 nm, which may find potential applications in nanophotonics, magnonics, and spintronics.

11.
Front Cell Neurosci ; 15: 722533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720878

RESUMO

A chemical synapse is either an action potential (AP) synapse or a graded potential (GP) synapse but not both. This study investigated how signals passed the glutamatergic synapse between the rod photoreceptor and its postsynaptic hyperpolarizing bipolar cells (HBCs) and light responses of retinal neurons with dual-cell and single-cell patch-clamp recording techniques. The results showed that scotopic lights evoked GPs in rods, whose depolarizing Phase 3 associated with the light offset also evoked APs of a duration of 241.8 ms and a slope of 4.5 mV/ms. The depolarization speed of Phase 3 (Speed) was 0.0001-0.0111 mV/ms and 0.103-0.469 mV/ms for rods and cones, respectively. On pairs of recorded rods and HBCs, only the depolarizing limbs of square waves applied to rods evoked clear currents in HBCs which reversed at -6.1 mV, indicating cation currents. We further used stimuli that simulated the rod light response to stimulate rods and recorded the rod-evoked excitatory current (rdEPSC) in HBCs. The normalized amplitude (R/Rmax), delay, and rising slope of rdEPSCs were differentially exponentially correlated with the Speed (all p < 0.001). For the Speed < 0.1 mV/ms, R/Rmax grew while the delay and duration reduced slowly; for the Speed between 0.1 and 0.4 mV/ms, R/Rmax grew fast while the delay and duration dramatically decreased; for the Speed > 0.4 mV/ms, R/Rmax reached the plateau, while the delay and duration approached the minimum, resembling digital signals. The rdEPSC peak was left-shifted and much faster than currents in rods. The scotopic-light-offset-associated major and minor cation currents in retinal ganglion cells (RGCs), the gigantic excitatory transient currents (GTECs) in HBCs, and APs and Phase 3 in rods showed comparable light-intensity-related locations. The data demonstrate that the rod-HBC synapse is a perfect synapse that can differentially decode and code analog and digital signals to process enormously varied rod and coupled-cone inputs.

12.
Front Genet ; 12: 746879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721535

RESUMO

Early cancer detection is the key to a positive clinical outcome. While a number of early diagnostics methods exist in clinics today, they tend to be invasive and limited to a few cancer types. Thus, a clear need exists for non-invasive diagnostics methods that can be used to detect the presence of cancer of any type. Liquid biopsy based on analysis of molecular components of peripheral blood has shown significant promise in such pan-cancer diagnostics; however, existing methods based on this approach require improvements, especially in sensitivity of early-stage cancer detection. The improvement would likely require diagnostics assays based on multiple different types of biomarkers and, thus, calls for identification of novel types of cancer-related biomarkers that can be used in liquid biopsy. Whole-blood transcriptome, especially its non-coding component, represents an obvious yet under-explored biomarker for pan-cancer detection. In this study, we show that whole transcriptome analysis using RNA-seq could indeed serve as a viable biomarker for pan-cancer detection. Furthermore, a class of long non-coding (lnc) RNAs, very long intergenic non-coding (vlinc) RNAs, demonstrated superior performance compared with protein-coding mRNAs. Finally, we show that age and presence of non-blood cancers change transcriptome in similar, yet not identical, directions and explore implications of this observation for pan-cancer diagnostics.

13.
ACS Appl Mater Interfaces ; 13(48): 56838-56849, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816709

RESUMO

Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-Bn-DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-Bn-DEA) exhibits very strong intramolecular B-N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-Bn-DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-Bn-DEA) and the negatively charged lipid preferred tugging the poly(o-Bn-DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.

14.
J Inflamm Res ; 14: 5619-5632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764667

RESUMO

Purpose: The aim of this study was to compare the differences in the immune microenvironment between HBV-infected pregnant women with a high HBV viral load and healthy pregnant women, with an emphasis on T cell subset alteration. Patients and Methods: We compared the differences of cellular and molecular signatures between HBV-infected and healthy pregnant women by performing single-cell RNA and T cell receptor sequencing of peripheral blood mononuclear cells from 51,836 women in the mid-trimester pregnancy stage. Specific trajectories of the different T clusters throughout the course of T cell differentiation were investigated. Flow cytometry was used to validate the proportion of different T cell subtypes. Results: We identified nine cellular subtypes and found an increased proportion of effector/memory CD8+ T cells in HBV-infected pregnant women. Both CD4+ and CD8+ effector/memory T cells in HBV-related samples expressed higher levels of metallothionein (MT)-related genes (MT2A, MTIE, MTIF, MTIX), metal ion pathways, and multiple inflammatory responses. Among CD8+ T cell clusters, we identified a particular subset of effector/memory CD8+ T cells (CD8-cluster 2) with MTs as the top-ranking genes, which may be enriched in HBV-related samples. These cells showed an increased clonal expansion in HBV infection. Moreover, we found more active immune responses, according to cellular interaction patterns, between immune cell subsets in HBV-infected samples. Conclusion: This study shows significant differences between HBV-infected and healthy samples, including cell clusters, dominant gene sets, T cell function, clonal expansion, and V/J gene usage of T cell clonotypes, and identifies a distinct CD8+ T cell cluster with immune-active and antiviral properties. These findings pave the way for a deeper understanding of the impact of HBV infection on the immune microenvironment during pregnancy.

15.
Hum Vaccin Immunother ; : 1-14, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34756160

RESUMO

Increased severity of diseases caused by Coxsackievirus A10 (CV-A10) as well as a large number of mutants and recombinants circulating in the population are a cause of concern for public health. A vaccine with broad-spectrum and homogenous protective capacity is needed to prevent outbreaks of CV-A10. Here, we evaluated cross-neutralization of prototype strain and 17 CV-A10 strains from related manufacturers in mainland China in vitro using 30 samples of plasma collected from naturally infected human adults and 18 sera samples from murine immunized with the above strains of CV-A10. Both human plasma and murine sera exhibited varying degrees of cross-neutralizing activities. Prototype A/Kowalik and sub-genotype C3/S113 were most difficult to neutralize. Among all strains tested, neutralization of S102 and S108 strains by 18 different sera was the most uniform, suggesting their suitability for detection of NtAb titers of different vaccines for avoiding biases introduced by detection strain. Furthermore, among all immune-sera, cross-neutralization of the 18 strains of CV-A10 by anti-S110 and anti-S102 was the most homogenous. Anti-S102 exhibiting higher geometric mean titer (GMT) in vitro was evaluated for its cross-protection capacity in vivo. Remarkably, administration of anti-S102 protected mice from lethal dosage of eight strains of CV-A10. These results provide a framework for formulating strategies for the R&D of vaccines targeting CV-A10 infections.

16.
Front Oncol ; 11: 759053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778079

RESUMO

Objective: To evaluate the prediction performance of 18F-PSMA-1007 PET/CT and clinicopathologic characteristics on prostate cancer (PCa) risk stratification and distant metastatic prediction. Materials and Methods: A retrospective analysis was performed on 101 consecutively patients with biopsy or radical prostatectomy proved PCa who underwent 18F-PSMA-1007 PET/CT. The semi-quantitative analysis provided minimum, maximum and mean standardized uptake (SUVmin, SUVmax and SUVmean) of PCa. Association between clinicopathologic characteristics (total prostate-specific antigen, tPSA and Gleason Score, GS) and PET/CT indexes were analyzed. The diagnostic performance of distant metastatic on PET/CT parameters, tPSA and GS was evaluated using logistic regression analyses. A path analysis was conducted to evaluate the mediating effect of tPSA level on the relation between semi-quantitative parameters of primary tumors and metastatic lesions. Results: The PET/CT parameters were all higher in high risk stratification subgroups (tPSA>20 ng/mL, GS ≥ 8, and tPSA>20 ng/mL and/or GS ≥ 8, respectively) with high sensitivity (86.89%, 90.16% and 83.61%, respectively). The SUVmax, tPSA and GS could effectively predict distant metastatic with high sensitivity of SUVmax (90.50%) compared with tPSA (57.14%) and GS (55.61%). With a cutoff value of 29.01ng/mL for tPSA, the detection rate of distant metastasis between low and high prediction tPSA group had statistical differences (50.00% vs. 76.60%, respectively; P = 0.006) which was not found on guideline tPSA level (P>0.05). 6/15 (40%) patients tPSA between 20ng/mL to 29.01ng/mL without distant metastases may change the risk stratification. Finally, tPSA had a partial mediating effect on SUVmax of primary tumors and metastases lesions. Conclusion: The 18F-PSMA-1007 PET/CT SUVmax has a higher sensitivity and can be an "imaging biomarker" for primary PCa risk stratification. The prediction tPSA level (29.01 ng/mL) is more conducive to the assessment of distant metastasis and avoid unnecessary biopsy.

17.
Mol Biol Rep ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813000

RESUMO

BACKGROUND: Salinity is an essential abiotic stress in plants. Dunaliella is a genus of high-salt-tolerant microalgae. The present study aimed to compare the characterizations of D. bioculata and D. quartolecta at different levels and investigate novel genes response to salt stress. METHODS AND RESULTS: High chlorophyll contents were detected in D. bioculata on the 35th d of salt stress, while high lipid and carotenoid contents were detected in D. quartolecta via morphological and biochemical analyses. Physiological analysis showed that D. quartolecta cells had a smaller increase in osmotic potential, a smaller decrease in the Na+/K+ ratio and photochemical efficiency (Fv/Fm), and a lower relative conductivity than D. bioculata cells. The genomic lengths of D. quartolecta and D. bioculata were 396,013,629 bp (scaffold N50 = 1954 bp) and 427,667,563 bp (scaffold N50 = 3093 bp) via high-throughput sequencing and de novo assembly, respectively. Altogether, 25,751 and 26,620 genes were predicted in their genomes by annotation analysis with various biodatabases. The D. bioculata genome showed more segmental duplication events via collinearity analysis. More single nucleotide polymorphisms and insertion-deletion variants were detected in the D. bioculata genome. Both algae, which showed a close phylogenetic relationship, may undergo positive selection via bioinformatics analysis. A total of 382 and 85 novel genes were screened in D. bioculata and D. quartolecta, with 138 and 51 enriched KEGG pathways, respectively. Unlike the novel genes adh1, hprA and serA, the relative expression of livF and phbB in D. bioculata was markedly downregulated as salinity increased, as determined by qPCR analysis. The relative expression of leuB, asd, pstC and proA in D. quartolecta was markedly upregulated with the same salinity increase. CONCLUSION: Dunaliella quartolecta is more halophilic than D. bioculata, with more effective responses to high salt stress based on the multiphase comparative data.

18.
J Neurol ; 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724571

RESUMO

Increasingly, evidence implicates an important role of neuroinflammation in neurodegeneration progression. Yet, brain imaging has not reached a consistent conclusion that neuroinflammation is involved in the pathogenesis of Parkinson's disease (PD). We aimed to review the evidence to quantitatively assess the existence and spatial distribution of neuroinflammation in the brain of PD patients. We systematically searched literature databases for case-control studies which used positron emission tomography to detect neuroinflammation represented by translocator protein (TSPO) levels in PD patients compared with healthy controls (HC). Standardized mean differences (SMD) were selected as effect sizes and random-effects models were used to combine effect sizes. Subgroup analyses for separate brain regions were conducted. Fifteen studies comprising 455 (HC = 198, PD = 238) participants and 19 brain regions were included. Compared to HC, PD patients had elevated TSPO levels in midbrain, putamen, anterior cingulate, posterior cingulate, thalamus, striatum, frontal, temporal, parietal, occipital, cortex, hippocampus, substantia nigra, pons, cerebellum, and caudate when using 1st-generation ligands. TSPO levels were elevated in the midbrain of PD patients when 2nd-generation ligands were used. We discussed the possible explanations of contrasting difference between these outcomes.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34616480

RESUMO

Many ingredients in Wenshen Shengjing Decoction (WSSJD) can cause epigenetic changes in the development of different types of cells. It is not yet known whether they can cause epigenetic changes in sperms or early embryos. Here, we investigated the role of WSSJD in epigenetic modifications of sperms or early embryos and early embryo development. A mouse model with spermatogenesis disorders was established with cyclophosphamide (CPA). WSSJD was administrated for 30 days. The male model mice after the treatment were mated with the female mice treated with superovulation. The embryo development rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K27me3 in sperm, pronuclear embryos, and 2-cell embryos. Western blotting was used to detect the expression of histone demethylase KDM6A and methyltransferase EZH2 in 2-cell embryos with developmental arrest. The expressions of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) in 2-cell embryos with developmental arrest were analyzed with qRT-PCR. Comparing with the control group, CPA destroyed the development of seminiferous epithelium, significantly increased the expression level of H3K27me3 in sperm, reduced the expression ratio of H3K27me3 in female and male pronuclei, delayed the development of 2-cell embryos, and increased the developmental arrest rate and degeneration rate of 2-cell embryos. Moreover, the expressions of EZH2 and H3K27me3 were significantly increased in the 2-cell embryos with developmental arrest, and the expression of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) was significantly decreased. Compared with the CPA group, WSSJD promoted the development of seminiferous epithelium, maintained a low level of H3K27me3 modification in sperm and male pronucleus, significantly increased the development rate of 2-cell embryos and 3-4 cell embryos, and reduced the developmental arrest rate and degeneration rate of 2-cell embryos. WSSJD may promote early embryonic development by maintaining a low level of H3K27me3 modification in sperm and male pronucleus and regulating the zygotic genome activation in mice with spermatogenesis disorders induced by CPA.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34601229

RESUMO

Hybridization is an efficient method to breed new strains of aquatic animals. In the present study, we produced a hybrid puffer by crossing female obscure puffer with male tiger puffer. The hybrid puffer could live in fresh water like obscure puffer and exhibited growth superiority. The averaged body weight of 4- and 6-month-old hybrid puffer were respectively 38.06% and 38.93% higher than that of obscure puffer. Then, we analyzed the underlying genetic basis for the growth advantage of hybrid puffer by comparative transcriptome analysis. A total number of 4264 and 1285 differentially expressed genes (DEGs) were respectively identified from pituitary and liver transcriptome profiles between hybrid puffer and obscure puffer. Comprehensive analysis showed that the DEGs related with cell proliferation and differentiation, and protein synthesis and export, specifically showed higher expression levels in hybrid puffer, such as "ECM-receptor interaction", "focal adhesion", "protein export" and "protein processing in endoplasmic reticulum". While the DEGs involved in gametogenesis and carbohydrate and energy metabolism highly expressed in obscure puffer, such as "oxidative phosphorylation", "citrate cycle", "progesterone-mediated oocyte maturation" and "oocyte meiosis". Furthermore, a series of candidate genes related to the growth superiority of hybrid puffer were identified, such as fn1a, ptprc, plcg2, igf1, tgfß1, bmp4, abl1, col1a2, col1a1a, and myl9a. These results will be beneficial to understand the molecular basis of growth superiority and helpful to the hybrid breeding of pufferfish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...