Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 45(4): 1037-1046, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124943

RESUMO

Breast cancer (BC) is the most common female malignant tumor worldwide. The mechanism of tumorigenesis is still unclear. Ras­related proteins in brain (Rab)22a belongs to the Ras superfamily, which may act as an oncogene and participate in carcinogenesis. The present study aims to identify whether Rab22a could be a novel biomarker of prognosis and determine the effects of Rab22a on BC cell progression. A total 258 BC and 56 para­tumor or non­tumor formalin fixed paraffin embedded tissues were stained through immunohistochemistry. The association between Rab22a expression and clinicopathological features, as well as overall survival status were analyzed. The expression level of Rab22a in breast cell lines were detected using reverse transcription­quantitative PCR and western blotting. SK­BR­3 cells were infected with Rab22a short hairpin RNA lenti­virus and the ability of cell proliferation, migration and invasion were measured. Gene Set Enrichment Analysis (GSEA) was employed to analyze the pathways involved in the Rab22a mRNA high level group. Rab22a was found to be overexpressed in BC tissues and upregulated in BC cells. High expression of Rab22a was related to a poor prognosis of patients with BC. Knockdown of Rab22a decreased the proliferation, migration and invasion ability of BC cells. GSEA indicated that certain pathways, including mammalian target of rapamycin complex 1 and protein secretion were upregulated, while pathways, such as hypoxia and KRas were downregulated in the Rab22a high level group. Rab22a is of prognostic value for BC and necessary for BC cell proliferation.

2.
Microb Cell Fact ; 19(1): 59, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138785

RESUMO

BACKGROUND: Heterogeneity of oil-bearing formations is one of major contributors to low oil recovery efficiency globally. Long-term water flooding will aggravate this heterogeneity by resulting in many large channels during the exploitation process. Thus, injected water quickly flows through these large channels rather than oil-bearing areas, which ultimately leads to low oil recovery. This problem can be solved by profile control using polymer plugging. However, non-deep profile control caused by premature plugging is the main challenge. Here, a conditional bacterial cellulose-producing strain, namely Enterobacter sp. FY-0701, was constructed for deep profile control to solve the problem of premature plugging. Its deep profile control and oil displacement capabilities were subsequently identified and assessed. RESULTS: The conditional bacterial cellulose-producing strain Enterobacter sp. FY-0701 was constructed by knocking out a copy of fructose-1, 6-bisphosphatase (FBP) encoding gene in Enterobacter sp. FY-07. Scanning electron microscope observation showed this strain produced bacterial cellulose using glucose rather than glycerol as the sole carbon source. Bacterial concentration and cellulose production at different locations in core experiments indicated that the plugging position of FY-0701 was deeper than that of FY-07. Moreover, enhanced oil recovery by FY-0701 was 12.09%, being 3.86% higher than that by FY-07 in the subsequent water flooding process. CONCLUSIONS: To our knowledge, this is the first report of conditional biopolymer-producing strains used in microbial enhance oil recovery (MEOR). Our results demonstrated that the conditional bacterial cellulose-producing strain can in situ produce biopolymer far from injection wells and plugs large channels, which increased the sweep volume of injection water and enhance oil recovery. The construction of this strain provides an alternative strategy for using biopolymers in MEOR.

3.
Front Immunol ; 11: 161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117296

RESUMO

Cerebral ischemia induces a robust neuroinflammatory response that is largely mediated by the activation of CNS resident microglia. Activated microglia produce pro-inflammatory molecules to cause neuronal damage. Identifying regulators of microglial activation bears great potential in discovering promising candidates for neuroprotection post cerebral ischemia. Previous studies demonstrate abnormal elevation of glutaminase 1 (GLS1) in microglia in chronic CNS disorders including Alzheimer's disease and HIV-associated neurocognitive disorders. Ectopic expression of GLS1 induced microglia polarization into pro-inflammatory phenotype and exosome release in vitro. However, whether GLS1 is involved in neuroinflammation in acute brain injury remains unknown. Here, we observed activation of microglia, elevation of GLS1 expression, and accumulation of pro-inflammatory exosomes in rat brains 72 h post focal cerebral ischemia. Treatment with CB839, a glutaminase inhibitor, reversed ischemia-induced microglial activation, inflammatory response, and exosome release. Furthermore, we found that the application of exosome secretion inhibitor, GW4869, displayed similar anti-inflammatory effects to that of CB839, suggesting GLS1-mediated exosome release may play an important role in the formation of neuroinflammatory microenvironment. Therefore, GLS1 may serve as a key mediator and promising target of neuroinflammatory response in cerebral ischemia.

4.
Nature ; 579(7797): 118-122, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103178

RESUMO

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.

5.
Eur J Pharm Biopharm ; 149: 121-134, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32035970

RESUMO

Over the years, the performance of the liposomal formulations of temoporfin, Foslip® and Fospeg®, was investigated in a broad array of cell-based assays and preclinical animal models. So far, little attention has been paid to the influence of drug release and liposomal stability on the plasma concentration-time profile. The drug release is a key attribute which impacts product quality and the in vivo efficacy of nanocarrier formulations. In the present approach, the in vitro drug release and the drug-protein transfer of Foslip® and Fospeg® was determined using the dispersion releaser technology. To analyze the stability of both formulations in physiological fluids, nanoparticle tracking analysis was applied. A comparable drug release behavior and a high physical stability with a vesicle size of approximately 92 ± 2 nm for Foslip® and at 111 ± 5 nm for Fospeg® were measured. The development of a novel hybrid in silico model resulted in an optimal representation of the in vivo data. Based on the information available for previous formulations, the model enabled a prediction of the performance of Foslip® in humans. To verify the simulations, plasma concentration-time profiles of a phase I clinical trial were used. An absolute average fold error of 1.4 was achieved. Moreover, a deconvolution of the pharmacokinetic profile into different fractions relevant for the in vivo efficacy and safety was achieved. While the total plasma concentration reached a cmax of 2298 ng/mL after 0.72 h, the monomolecular drug accounted for a small fraction of the photosensitizer with a cmax of 321 ng/mL only.

6.
Sci Total Environ ; 709: 135888, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31927426

RESUMO

As global climate warms, the occurrence frequency and loss of natural disaster are both increasing, posing a great threat to the sustainable development of human society. One of the most important approaches of disaster management is to prevent disaster and reduce disaster loss through fiscal expenditure of government; however, the optimal proportion of expenditure for disaster prevention and mitigation has always been a difficult issue that people concern about. First, this paper, after considering the impact of disaster on human capital, established a resident-manufacturer-government decision making model which contains the probability of disaster, and then solved the optimal proportion of government expenditure for disaster prevention and reduction as well as the expected economic growth rates under different conditions. Second, through numerical simulation method, this paper studied the impacts of such factors as coefficient of risk aversion and elasticity coefficient of substitution on the optimal proportion of disaster prevention and reduction expenditure. Third, through constant elasticity of substitution (CES) production function and ridge regression method, this paper verified the applicability of the proposed model with the data of the expenditures for disaster prevention and mitigation of Hunan Province in 2014. Finally, this paper summarized the research results and put forward corresponding suggestions on policy. The theoretical model proposed in this paper enriches the related researches of disaster economics, and the conclusions of empirical analysis can provide government departments with useful reference for the practice of disaster prevention and mitigation.

7.
Biomaterials ; 232: 119668, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927179

RESUMO

Mitophagy is a specific self-protective autophagic process that degrades damaged or dysfunctional mitochondria, and is generally considered to reduce the effectiveness of mitochondria-targeted therapies. Here, we report an energy depletion-based anticancer strategy by selectively activating excessive mitophagy in cancer cells. We fabricate a type of mitochondria-targeting nanomicelles via the self-assembly of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and dc-IR825 (a near-infrared cyanine dye and a photothermal agent). The TPGS/dc-IR825 nanomicelles enable mitochondrial damage in cancer cells, which, for self-protection, activate two autophagic pathways, (1) mitophagy and (2) adenosine triphosphate (ATP) shortage-triggered autophagy. However, the excessive mitophagy/autophagy activities far surpass the degradative capacity of autolysosomes, leading to the formation of micrometer-sized vacuoles and degradation blockage. Immunofluorescence staining and Western blot analysis reveal that the nanomicelle-treated cancer cells are under severe ATP shortage, which eventually causes substantial cell death. Moreover, the nanomicelles intravenously injected into tumor-bearing mice show high tumor accumulation, long tumor retention, and inhibit the tumor growth by inducing excessive mitophagy/autophagy and energy depletion in tumor cells. Additional near-infrared laser irradiation treatment further enhances the in vitro and in vivo anticancer efficiencies of the nanomicelles, due to the excellent photothermal and photodynamic effects of dc-IR825. We believe that this work highlights the important role of mitophagy/autophagy in treating cancers.

8.
Nucleic Acids Res ; 48(D1): D1104-D1113, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701126

RESUMO

With the goal of charting plant transcriptional regulatory maps (i.e. transcription factors (TFs), cis-elements and interactions between them), we have upgraded the TF-centred database PlantTFDB (http://planttfdb.cbi.pku.edu.cn/) to a plant regulatory data and analysis platform PlantRegMap (http://plantregmap.cbi.pku.edu.cn/) over the past three years. In this version, we updated the annotations for the previously collected TFs and set up a new section, 'extended TF repertoires' (TFext), to allow users prompt access to the TF repertoires of newly sequenced species. In addition to our regular TF updates, we are dedicated to updating the data on cis-elements and functional interactions between TFs and cis-elements. We established genome-wide conservation landscapes for 63 representative plants and then developed an algorithm, FunTFBS, to screen for functional regulatory elements and interactions by coupling the base-varied binding affinities of TFs with the evolutionary footprints on their binding sites. Using the FunTFBS algorithm and the conservation landscapes, we further identified over 20 million functional TF binding sites (TFBSs) and two million functional interactions for 21 346 TFs, charting the functional regulatory maps of these 63 plants. These resources are publicly available at PlantRegMap (http://plantregmap.cbi.pku.edu.cn/) and a cloud-based mirror (http://plantregmap.gao-lab.org/), providing the plant research community with valuable resources for decoding plant transcriptional regulatory systems.

9.
Int J Biol Macromol ; 143: 443-452, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790733

RESUMO

In the work, the poly(lactic acid) (PLA)/poly (ethylene-butylacrylate-glycidyl methacrylate) (PTW) blends were prepared by melt compounding. PTW as a toughening agent for PLA, the PLA/PTW blends had good compatibility due to the chemical reaction between the epoxy groups of PTW and the end group of PLA during the blending process. With increasing PTW content from 0 to 20%, the impact strength of PLA/PTW blends was enhanced from 4.6 to 54.1 kJ/m2 and the elongation at break was increased from 5.6% to 270%. The scanning electron microscopy (SEM) images of the impact fracture surfaces showed a large amount of cavities and plastic deformation, which caused by the elastomer and the interfacial adhesion enhanced through the interaction of the terminal functional groups. That was the reason that the toughness of PLA was increased. Finally, proteinase K-catalyzed degradation tests shown that the addition of PTW was beneficial to the biodegradation of PLA and reduced environmental pollution.

10.
Eur J Cell Biol ; 99(1): 151058, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810634

RESUMO

Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it's the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.

11.
Orthop Surg ; 12(1): 286-294, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31840428

RESUMO

OBJECTIVE: To analyze the correlation between the Kellgren-Lawrence (K-L) score of knee osteoarthritis (KOA) patients with different degrees and their urine concentration of C-terminal telopeptide of collagen type II (CTX-II) and interleukin-1ß (IL-1ß), and to further evaluate the diagnostic value of CTX-II and IL-1ß during the pathological process by producing an experimental osteoarthritis (OA) model in rabbits. METHODS: From 1 January 2017 to 31 December 2018, a total of 34 subjects (7 mild, 9 moderate, 9 severe arthritis patients, and 9 healthy individuals) comprising 16 men and 18 women were included in this study. Patients were diagnosed according to the American College of Rheumatology (ACR) criteria. The urine of all subjects was collected to detect the concentration of CTX-II and IL-1ß. The rabbits in the KOA group were subjected to protease (control group with saline) injection into the articular cavity of their right knees and immobilization with gypsum. We used radiological and histological examination to identify the KOA model. ELISA was applied to investigate the concentrations of CTX-II and IL-1ß in urine and serum, and Spearman's rank correlation analysis was used to analyze the correlation. RESULTS: There was no significant difference in the mean ages and body mass index (BMI) between groups. The mean ages of mild, moderate, and severe arthritis patients and healthy individuals were 54.29 ± 5.76, 58.44 ± 6.44, 59.89 ± 6.75, and 56.67 ± 4.18 years, respectively. The mean BMI of mild, moderate, and severe arthritis patients and healthy individuals were 23.59 ± 1.56, 23.57 ± 2.06, 24.46 ± 1.64, and 23.42 ± 1.35 kg/m2 , respectively. The Kellgren-Lawrence (K-L) score was higher with the aggravation of KOA. The K-L scores of mild, moderate, and severe KOA patients were 1.14 ± 0.38, 2.56 ± 0.53, and 3.63 ± 0.52, respectively. The KOA symptoms of patients became more severe, with not only increased K-L scores but also elevated concentrations of CTX-II and IL-1ß. Moreover, there was a positive correlation between CTX-II and IL-1ß of all subjects (r = 0.974, P < 0.001), between K-L score and urine concentration of CTX-II (r = 0.900, P < 0.001), and between K-L score and IL-1ß (r = 0.813, P < 0.001) of all subjects. Both were significantly increased in KOA group rabbits at all time points after surgery. The serum concentration of CTX-II and IL-1ß was elevated as early as in the 2nd week (3.69 and 4.25 times) and reached a peak (5.41 and 7.23 times) in the 4th week after surgery. Then, until 12 weeks after surgery, the CTX-II and IL-1ß concentrations in the KOA group were slightly reduced and remained around 4.5 and 6.3 times that in the control group. Moreover, there was a positive correlation between the serum concentration of IL-1ß and CTX-II (r = 0.967, P < 0.001). CONCLUSION: CTX-II and IL-1ß, which were significantly increased during the process of KOA, can be used as biomolecular markers to provide guidelines for early diagnosis and treatment of KOA.

12.
J Chromatogr A ; 1614: 460710, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784082

RESUMO

To monitor the existing and emerging halogenated carboxylic acids (HCAs) in drinking water, a sensitive and rapid ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry method for simultaneous target quantification of 10 haloacetic acids (HAAs) and semi-target screening of 19 HCAs was developed. After filtration, drinking water samples were injected into the instrument. HCAs were separated on an HSS T3 column and detected by a type of non-target scan in the electrospray ionization negative mode. For target quantification of 10 HAAs, good linearity was obtained and the correlation coefficients were higher than 0.995. The limits of detection were in the range of 0.050-2.0 µg/L. The recoveries were in the range of 89.7%-108%, 83.4%-121%, 77.1%-116% and 80.2%-104% at levels of 2.5, 5.0, 10 and 20 µg/L, respectively, with relative standard deviations of 1.26%-16.9%. For semi-target screening of 19 HCAs, several criteria including accurate m/z, predicted retention time, deduced fragment ions and simulated isotope pattern were used for identification. The method was applied to analyzing 41 drinking water samples successfully. Five HAAs were detected by target quantification, with dichloroacetic acid and trichloroacetic acid exceeding the limits suggested by the U.S. Environmental Protection Agency and the World Health Organization. Eight HCAs were preliminary identified by semi-target screening, and three of them were further confirmed with reference standards purchased later.

13.
Nanoscale ; 12(1): 210-219, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31815993

RESUMO

Nanoparticle (NP)-based hydrogels that can introduce synergistic advantages to the novel three-dimensional scaffold have garnered much attention recently. However, the application of NP-crosslinked hydrogels still remains challenging due to the complicated synthesis and/or modification of the NPs and the changed properties of the NPs after gelation. Herein, a novel palladium nanosheet (Pd NS)-based hydrogel (Pd Gel) with Pd NSs as crosslinkers was obtained by simply mixing Pd NSs with thiol-terminated four-arm polyethylene glycol (4arm-PEG-thiol). It was found that the formed Pd Gel was injectable, possibly due to the dynamic Pd-S bonds formed between Pd NSs and 4arm-PEG-thiol. In addition, compared with free Pd NSs, the Pd NSs within the hydrogel exhibited a significantly higher stability. We have further demonstrated that the formed hydrogel could encapsulate the commonly used anticancer drug doxorubicin (DOX) to form DOX@Pd Gel for combined chemo-photothermal therapy. Particularly, Pd NSs with a high absorption in the near-infrared (NIR) region could convert the energy of NIR laser into heat with a high efficiency, which is beneficial for photothermal therapy. Moreover, DOX@Pd Gel could maintain a sustainable release of DOX and the NIR laser irradiation could accelerate this drug release process. Then, the explosively released DOX and the hyperthermia generated from Pd NSs under NIR laser irradiation acted in a synergistic way to realize the combined therapeutic effect of the chemo-photothermal treatment. Finally, the in vivo anticancer effect and safety of the combined therapy were also verified by the tumor-bearing mouse model. Taken together, this work constructs a NP-crosslinked, NIR laser-activatable and injectable photothermal hydrogel via dynamic Pd-S bonding, and demonstrates that the hydrogel allows us to release DOX more precisely, eliminate tumor more effectively and inhibit tumor metastasis more persistently, which will advance the development of novel anticancer strategies.

14.
Biochem Biophys Res Commun ; 522(4): 1063-1068, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31822343

RESUMO

Ferroptosis is identified as a regulated cell death mediated by iron accumulation and lipid peroxidation. The disturbances of mitochondrial morphology and function have been shown in this process. Mitochondrial Lon peptidase 1 (LONP1) is one of the main multi-function enzymes in regulating the mitochondrial function and cytological stability. To evaluate whether LONP1 take a role in ferroptosis, we applied erastin to initiate the ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here we show that erastin triggers cell death in both of oncogenic RAS mutant PANC1 cells and wild KRAS BxPC3 cells and the expression of LONP1 was up-regulated in this process. Gene inhibition of LONP1 only negatively regulates erastin-induced cell death and the alterations of molecular indicators in PANC1 cells. Furthermore, we show that inhibition of LONP1 activates the Nrf2/Keap1 signal pathway and up-regulates the expression of GPX4, a key peroxidase in regulating ferroptosis. Together, our results uncover a previously unappreciated mechanism coupling LONP1 to ferroptosis.

15.
Brain Behav Immun ; 83: 214-225, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31669519

RESUMO

The vicious cycle between the chronicactivationofmicroglia and dopamine neurons degeneration is linked with the progression of Parkinson's disease (PD). Targeting microglialactivationhas proven to be a viable option to develop a disease-modified therapy for PD. Galectin-1, which has been reported to have an anti-neuroinflammation effect was used in the present study to evaluate its therapeutic effects on microglia activation and neuronal degeneration in Parkinson's disease model. It was found that galectin-1 attenuated the inflammatory insult and the apoptosis of SK-N-SH human neuroblastoma cells from conditioned medium of activated microglia induced by Lipopolysaccharides (LPS). Nonetheless, galectin-1 administration (0.5 mg/kg) inhibited the microglia activation, improved the motor deficits in PD mice model induced by MPTP (25 mg/kg weight of mouse, i.p.) and prevented the degeneration of dopaminergic neurons in the substantia nigra. Administration of galectin-1 resulted in p38 and ERK1/2 dephosphorylation followed by IκB/NFκB signaling pathway inhibition. Galectin-1 significantly decreased the secretion of pro-inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The protective effects and modulation of the MAPK/IκB/NFκB signaling pathway were abolished with ß-D-galactose which blocked the carbohydrate-recognition domain of galectin-1. The present study demonstrated that galectin-1 inhibited microglia activation and ameliorated neurodegenerative process in PD model by modulating MAPK/IκB/NFκB axis through its carbohydrate-recognition domain.

16.
J Nanosci Nanotechnol ; 20(4): 2389-2394, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492252

RESUMO

Amidoxime polyacrylonitrile (AOPAN) beads with diameter of around 2 mm were prepared by a simple ball-dropping method, and were used as support for the immobilization of Pd or PdNi nanoparticles for catalytic application in formic acid dehydrogenation. The Pd-based nanoparticles showed uniform distribution on the surface of the AOPAN beads, with good accessibility to reagents. The optimized PdNi/AOPAN catalyst can efficiently convert formic acid to hydrogen with a turn over frequency of 3041 h-1 under ambient conditions, and this catalytic activity was maintained well for at least seven cycles. The millimeter-sized beads can float on water, making them easy to manipulate and recover without any weight loss. The amidoxime and cyano groups on the surface of the AOPAN beads play critical roles in stabilizing and distributing Pd-based nanoparticles, and may also participate in the synergistic activation of formic acid dehydrogenation.

17.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795434

RESUMO

With the rapid development of three-dimensional point cloud acquisition from mobile laser scanning systems, the extraction of urban roads has become a major research focus. Although it has great potential for digital image processing, the extraction of roads using the region growing approach is still in its infancy. We propose an automated method of urban road extraction based on region growing. First, an initial seed is chosen under constraints relating to the Gaussian curvature, height and number of neighboring points, which ensures that the initial seed is located on a road. Then, the growing condition is determined by the angle threshold of the tangent plane of the seed point. Then, new seeds are selected based on the identified road points and their curvature. The method also includes a strategy for dealing with multiple discontinuous roads in a dataset. The result shows that the method can not only achieve high accuracy in urban road extraction but is also stable and robust.

18.
Reprod Biomed Online ; 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31786047

RESUMO

RESEARCH QUESTION: In this meta-analysis, the association between endometrial thickness (EMT) and cycle outcomes after IVF is explored. Associations between EMT and cycle outcomes according to study and individual characteristics were also assessed. DESIGN: Studies evaluating associations between EMT and pregnancy, implantation, miscarriage, live birth or ongoing pregnancy and ectopic pregnancy rates in individuals after IVF were identified on PubMed, Embase and the Cochrane Library (from their inception up to December 2018). Pooled odds ratios with 95% confidence intervals, calculated using the random-effects model, were used. RESULTS: Nine prospective and 21 retrospective studies, including a total of 88,056 cycles, were retrieved. The summary odds ratios indicated that women with lower EMT were associated with lower pregnancy rates than those with higher EMT (n = 30, OR 0.61; 95% CI 0.52 to 0.70; P < 0.001). Moreover, the implantation rate in women with lower EMT was significantly reduced (n = 9, OR 0.49; 95% CI 0.32 to 0.74; P = 0.001). Furthermore, no significant association was found between EMT and the miscarriage rate (n = 12). In addition, women with lower EMT were associated with reduced live birth or ongoing pregnancy rate (11 studies, OR 0.60; 95% CI 0.48 to 0.73; P < 0.001). Finally, the incidence of ectopic pregnancy rate between lower and higher EMT showed no statistically significant association (n = 3). CONCLUSIONS: Lower EMT was associated with lower pregnancy, implantation and live birth or ongoing pregnancy rates.

19.
Clin Chem ; 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811004

RESUMO

BACKGROUND: The newest advances in DNA sequencing are based on technologies that perform massively parallel sequencing (MPS). Since 2006, the output from MPS platforms has increased from 20 Mb to >7 Tb. First-generation MPS platforms amplify individual DNA molecules to multiple copies and then interrogate the sequence of those molecules. Second-generation MPS analyzes single unamplified molecules to generate much longer sequence reads but with less output than first-generation MPS and lower first-pass accuracy. With MPS technologies, it is now possible to analyze genomes, exomes, a defined subset of genes, transcriptomes, and even methylation across the genome. These technologies have and will continue to completely transform the clinical practice. CONTENT: The major first- and second-generation MPS platforms and how they are used in clinical practice are discussed. SUMMARY: The ability to sequence terabases of DNA per run on an MPS platform will dramatically change how DNA sequencing is used in clinical practice. Currently, MPS of targeted gene panels is the most common use of this technology clinically, but as the cost for genome sequencing inches downward to $100, this may soon become the method of choice (with the caveat that, at least in the near term, clinical-grade genome sequencing with interpretation may cost much more than $100). Other uses of this technology include sequencing of a mixture of bacterial and viral species (metagenomics), as well as the characterization of methylation across the genome.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31872942

RESUMO

Squaraines (SQs) with tunable emission in the solid state is of great importance for various demands; however a remaining challenge is emission quenching upon aggregation. Herein, a unique SQ, named as CIEE-SQ, is designed to exhibit strong emission in crystal, undergoing crystallization-induced reverse from dark 1 (n+σ,π*) to bright 1 (π,π*) excited states. Such an excited state of CIEE-SQ can be subtly tuned by molecular conformation changes during the unexpected temperature-triggered single-crystal to single-crystal (SCSC) reversible transformation. Furthermore, co-crystallization between CIEE-SQ and chloroform largely stabilize the 1 (π,π*) state, enhancing the transition dipole moment and decreasing the reorganization energy to boost the fluorescence, which is promising in data encryption and decryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA