Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 606, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001696

RESUMO

Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices.

2.
Nanoscale ; 11(39): 18169-18175, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31556893

RESUMO

The search for high efficiency and low-cost catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital to overall water splitting. In this work, on the basis of first-principles calculations, we screened a series of late transition metal atoms supported on a C9N4 monolayer (TM@C9N4, where TM represents Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, and Pt) as electrocatalysts for both the HER and OER. Our results demonstrate that the TM atoms can be bonded with the nitrogen atoms around the hole to form stable structures, and the bonded TM atoms are stable against diffusion. Co@C9N4 exhibits high catalytic activity toward the HER. In particular, the N active sites in the Co@C9N4, Ni@C9N4, and Pt@C9N4 systems demonstrate relatively high performance for the HER. However, Co@C9N4 and Pt@C9N4 exhibit low OER activities with large overpotentials. Among the ten cases of TM@C9N4 considered here, only Ni@C9N4 performs as a promising bifunctional electrocatalyst with N and Ni atoms as catalytic active sites for the HER and OER, with a calculated hydrogen adsorption Gibbs free energy (ΔGH*) of -0.04 eV and an OER overpotential (ηOER) of 0.31 V. The results demonstrate that TM@C9N4 is a promising single-atom catalytic system, which can be used as the non-noble metal bifunctional electrocatalyst for overall water splitting.

3.
Phys Chem Chem Phys ; 21(6): 3024-3032, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672565

RESUMO

Highly active single-atom catalysts (SACs) have recently been intensively studied for their potential in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Due to the existence of many such SAC systems, a general understanding of the trend and designing principle is necessary to discover an optimal SAC system. In this work, by using density functional theory (DFT), we investigated a series of late single transition metals (TM = Fe, Co, Ni, Cu, and Pd) anchored on various N doped graphenes (xN-TM, x = 1-4) as electrocatalysts for both the HER and OER. Solvent effects were taken into account using an implicit continuum model. Our results reveal that the catalytic activity of SACs is determined by the local coordination number of N and TM in the catalysts. Among the considered catalysts, a low-coordinated Co site, i.e. a triple-coordinated Co, exhibits a high catalytic activity toward the HER with a calculated hydrogen adsorption free energy of -0.01 eV, whereas a high-coordinated Co center, i.e. a quadruple-coordinated Co is a promising candidate for the OER with a low computed overpotential of -0.39 V, which are comparable to those of noble metal catalysts, indicating superior HER and OER performance of N-Co co-doped graphenes. The results shed light on the potential applications of TM and N co-doped graphenes as efficient single-atom bifunctional catalysts for water splitting, thereby functioning as promising candidates for hydrogen/oxygen production.

4.
Nano Lett ; 19(1): 591-597, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30582699

RESUMO

An understanding of nanocrystal shape evolution is significant for the design, synthesis, and applications of nanocrystals with surface-enhanced properties such as catalysis or plasmonics. Surface adsorbates that are selectively attached to certain facets may strongly affect the atomic pathways of nanocrystal shape development. However, it is a great challenge to directly observe such dynamic processes in situ with a high spatial resolution. Here, we report the anomalous shape evolution of Ag2O2 nanocrystals modulated by the surface adsorbates of Ag clusters during electron beam etching, which is revealed through in situ transmission electron microscopy (TEM). In contrast to the Ag2O2 nanocrystals without adsorbates, which display the near-equilibrium shape throughout the etching process, Ag2O2 nanocrystals with Ag surface adsorbates show distinct facet development during etching by electron beam irradiation. Three stages of shape changes are observed: a sphere-to-a cube transformation, side etching of a cuboid, and bottom etching underneath the surface adsorbates. We find that the Ag adsorbates modify the Ag2O2 nanocrystal surface configuration by selectively capping the junction between two neighboring facets. They prevent the edge atoms from being etched away and block the diffusion path of surface atoms. Our findings provide critical insights into the modulatory function of surface adsorbates on the shape control of nanocrystals.

5.
Proc Natl Acad Sci U S A ; 115(36): 8889-8894, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127004

RESUMO

Semiconductor p-n junctions are fundamental building blocks for modern optical and electronic devices. The p- and n-type regions are typically created by chemical doping process. Here we show that in the new class of halide perovskite semiconductors, the p-n junctions can be readily induced through a localized thermal-driven phase transition. We demonstrate this p-n junction formation in a single-crystalline halide perovskite CsSnI3 nanowire (NW). This material undergoes a phase transition from a double-chain yellow (Y) phase to an orthorhombic black (B) phase. The formation energies of the cation and anion vacancies in these two phases are significantly different, which leads to n- and p- type electrical characteristics for Y and B phases, respectively. Interface formation between these two phases and directional interface propagation within a single NW are directly observed under cathodoluminescence (CL) microscopy. Current rectification is demonstrated for the p-n junction formed with this localized thermal-driven phase transition.

6.
Environ Pollut ; 227: 498-504, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28494402

RESUMO

Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average Σ18PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g-1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g-1 dw) and Bering Sea (39.5 ± 11.3 ng g-1 dw), while the Bering Strait (16.8 ± 7.1 ng g-1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g-1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∼42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∼32%, and high temperature pyrogenic sources contributing ∼26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Canadá , Carvão Mineral/análise , Sedimentos Geológicos/análise , Modelos Lineares , Naftalenos , Oceanos e Mares , Análise de Componente Principal , Madeira/química
7.
Environ Sci Technol ; 51(7): 3809-3815, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28245125

RESUMO

The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ7OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ7OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ7OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.


Assuntos
Retardadores de Chama , Plastificantes , Monitoramento Ambiental , Oceanos e Mares , Organofosfatos
8.
Adv Mater ; 29(17)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28256771

RESUMO

Herein, the authors demonstrate a heterostructured NiFe LDH-NS@DG10 hybrid catalyst by coupling of exfoliated Ni-Fe layered double hydroxide (LDH) nanosheet (NS) and defective graphene (DG). The catalyst has exhibited extremely high electrocatalytic activity for oxygen evolution reaction (OER) in an alkaline solution with an overpotential of 0.21 V at a current density of 10 mA cm-2 , which is comparable to the current record (≈0.20 V in Fe-Co-Ni metal-oxide-film system) and superior to all other non-noble metal catalysts. Also, it possesses outstanding kinetics (Tafel slope of 52 mV dec-1 ) for the reaction. Interestingly, the NiFe LDH-NS@DG10 hybrid has also exhibited the high hydrogen evolution reaction (HER) performance in an alkaline solution (with an overpotential of 115 mV by 2 mg cm-2 loading at a current density of 20 mA cm-2 ) in contrast to barely HER activity for NiFe LDH-NS itself. As a result, the bifunctional catalyst the authors developed can achieve a current density of 20 mA cm-2 by a voltage of only 1.5 V, which is also a record for the overall water splitting. Density functional theory calculation reveals that the synergetic effects of highly exposed 3d transition metal atoms and carbon defects are essential for the bifunctional activity for OER and HER.

9.
Nat Commun ; 8: 13907, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045015

RESUMO

Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 µmol h-1 g-1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1-xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.

10.
ACS Appl Mater Interfaces ; 9(5): 4320-4325, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27574872

RESUMO

Two-dimensional ultrathin cobaltosic oxide nanosheets with numerous geometrical holes were synthesized by the hydrothermal method, and further used as an effective encapsulation matrix for sulfur and polysulfides in lithium-sulfur batteries. The cobaltosic oxide/sulfur nanosheet composite electrode exhibits high Coulombic efficiency (99%), a suppressed shuttle effect, and a reversible capacity of 656 mA h g-1 at 0.2 C after 200 cycles, with small capacity fading of 0.219% per cycle, whereas its carbon-sulfur electrode counterpart only retains a capacity of 386 mA h g-1 after 100 cycles. The improved performance is attributed to the strong chemical interaction between polysulfides and cobaltosic oxide, and its facile ionic transport and enhanced reaction kinetics, which can effectively control the diffusion of polysulfides and keep them within the cathode region, leading to good electrochemical stability.

11.
ACS Appl Mater Interfaces ; 8(39): 25667-25673, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27658731

RESUMO

By first-principle calculations, we have systematically studied the effect of strain/pressure on the electronic structure of rutile lead/stannic dioxide (PbO2/SnO2). We find that pressure/strain has a significant impact on the electronic structure of PbO2/SnO2. Not only can the band gap be substantially tuned by pressure/strain, but also a transition between a semiconductor and a gapless/band-inverted semimetal can be manipulated. Furthermore, the semimetallic state is robust under strain, indicating a bright perspective for electronics applications. In addition, a practical approach to realizing strain in SnO2 is then proposed by substituting tin (Sn) with lead (Pb), which also can trigger the transition from a large-band-gap to a moderate-gap semiconductor with enhanced electron mobility. This work is expected to provide guidance for full utilization of the flexible electronic properties in PbO2 and SnO2.

12.
Adv Mater ; 28(43): 9532-9538, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27622869

RESUMO

Defects derived by the removal of heteroatoms from graphene are demonstrated, both experimentally and theoretically, to be effective for all three basic electrochemical reactions, e.g., oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER). Density function theory calculations further reveal that the different types of defects are essential for the individual electrocatalytic activity for ORR, OER, and HER, respectively.

13.
Nano Lett ; 16(5): 3022-8, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27050491

RESUMO

Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [ Nature 2009 , 457 , 863 ]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs with the P6/mmm space group and six atoms in the unit cell and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac Fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 × 10(6) m/s, which is even higher than that of graphene (0.82 × 10(6) m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.

14.
J Am Chem Soc ; 138(19): 6292-7, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27116595

RESUMO

Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

15.
ACS Appl Mater Interfaces ; 8(8): 5385-92, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859697

RESUMO

One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

16.
Nanoscale ; 8(9): 4969-75, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26620395

RESUMO

Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.

17.
Sci Rep ; 5: 17558, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626797

RESUMO

Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.

18.
Phys Chem Chem Phys ; 17(46): 31140-4, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26538201

RESUMO

Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970-974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.

19.
J Phys Chem Lett ; 6(14): 2682-7, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26266848

RESUMO

Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.

20.
Beilstein J Nanotechnol ; 6: 2470-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26885459

RESUMO

The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA