Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 695, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741944

RESUMO

The functionality and performance of a semiconductor is determined by its bandgap. Alloying, as for instance in InxGa1-xN, has been a mainstream strategy for tuning the bandgap. Keeping the semiconductor alloys in the miscibility gap (being homogeneous), however, is non-trivial. This challenge is now being extended to halide perovskites - an emerging class of photovoltaic materials. While the bandgap can be conveniently tuned by mixing different halogen ions, as in CsPb(BrxI1-x)3, the so-called mixed-halide perovskites suffer from severe phase separation under illumination. Here, we discover that such phase separation can be highly suppressed by embedding nanocrystals of mixed-halide perovskites in an endotaxial matrix. The tuned bandgap remains remarkably stable under extremely intensive illumination. The agreement between the experiments and a nucleation model suggests that the size of the nanocrystals and the host-guest interfaces are critical for the photo-stability. The stabilized bandgap will be essential for the development of perovskite-based optoelectronics, such as tandem solar cells and full-color LEDs.

2.
J Phys Chem Lett ; 9(23): 6676-6682, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398890

RESUMO

Despite their weak nature, van der Waals (vdW) interactions have been shown to effectively control the optoelectronic and vibrational properties of layered materials. However, how vdW effects exist in Ruddlesden-Popper layered halide perovskites remains unclear. Here we reveal the role of interlayer vdW force in Ruddlesden-Popper perovskite in regulating phase-transition kinetics and carrier dynamics based on high-quality epitaxial single-crystalline (C4H9NH3)2PbI4 flakes with controlled dimensions. Both substrate-perovskite epitaxial interaction and interlayer vdW interaction play significant roles in suppressing the structural phase transition. With reducing flake thickness from ∼100 to ∼20 nm, electron-phonon coupling strength decreases by ∼30%, suggesting the ineffectiveness of phonon confinement of the natural quantum wells. Therefore, the conventional understanding that vdW perovskite is equivalent to a multiple quantum well has to be substantially amended due to significant nonlocal phononic effects in the layered crystal, where intralayer interaction is not drastically different from the interlayer force.

3.
Adv Mater ; 30(20): e1707093, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29602181

RESUMO

Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m-2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.

4.
J Phys Chem Lett ; 8(14): 3266-3271, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28677389

RESUMO

The halide perovskite CsPbBr3 has shown its promise for green light-emitting diodes. The optimal conditions of photoluminescence and the underlying photophysics, however, remain controversial. To address the inconsistency seen in the previous reports and to offer high-quality luminescent materials that can be readily integrated into functional devices with layered architecture, we created thin films of CsPbBr3/Cs4PbBr6 composites based on a dual-source vapor-deposition method. With the capability of tuning the material composition in a broad range, CsPbBr3 is identified as the only light emitter in the composites. Interestingly, the presence of the photoluminescence-inactive Cs4PbBr6 can significantly enhance the light emitting efficiency of the composites. The unique negative thermal quenching observed near the liquid nitrogen temperature indicates that a type of shallow state generated at the CsPbBr3/Cs4PbBr6 interfaces is responsible for the enhancement of photoluminescence.

5.
Nano Lett ; 17(8): 4831-4839, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28661680

RESUMO

Organic-inorganic hybrid perovskites have shown great potential as building blocks for low-cost optoelectronics for their exceptional optical and electrical properties. Despite the remarkable progress in device demonstration, fundamental understanding of the physical processes in halide perovskites remains limited, especially the unusual electronic behaviors such as the current-voltage hysteresis and the switchable photovoltaic effect. These phenomena are of particular interests for being closely related to device functionalities and performance. In this work, a microscopic picture of electric fields in halide perovskite thin films was obtained using scanning laser microscopy. Unlike conventional semiconductors, distribution of the built-in electric fields in the halide perovskite evolves dynamically under the stimulation of external biases. The observations can be well explained using a model based on field-assisted ion migration, indicating that the mechanism responsible for the evolving charge transport observed in this material is not purely electronic. The anomalous dynamic responses to the applied bias are found to be effectively suppressed by operating the devices at reduced temperature or processing the materials at elevated temperature, which provide potential strategies for designing and creating halide perovskites with more stable charge transport properties in the development of viable perovskite-based optoelectronics.

6.
Adv Mater ; 28(40): 8983-8989, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27530447

RESUMO

Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m-2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs.

7.
Adv Mater ; 28(2): 305-11, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26572239

RESUMO

Bright light-emitting diodes based on solution-processable organometal halide perovskite nanoplatelets are demonstrated. The nanoplatelets created using a facile one-pot synthesis exhibit narrow-band emissions at 529 nm and quantum yield up to 85%. Using these nanoparticles as emitters, efficient electroluminescence is achieved with a brightness of 10 590 cd m(-2) . These ligand-capped nanoplatelets appear to be quite stable in moisture, allowing out-of-glovebox device fabrication.

8.
ACS Nano ; 10(2): 1795-801, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26713348

RESUMO

Printed organometal halide perovskite light-emitting diodes (LEDs) are reported that have indium tin oxide (ITO) or carbon nanotubes (CNTs) as the transparent anode, a printed composite film consisting of methylammonium lead tribromide (Br-Pero) and poly(ethylene oxide) (PEO) as the emissive layer, and printed silver nanowires as the cathode. The fabrication can be carried out in ambient air without humidity control. The devices on ITO/glass have a low turn-on voltage of 2.6 V, a maximum luminance intensity of 21014 cd m(-2), and a maximum external quantum efficiency (EQE) of 1.1%, surpassing previous reported perovskite LEDs. The devices on CNTs/polymer were able to be strained to 5 mm radius of curvature without affecting device properties.

9.
Nano Lett ; 15(10): 7037-42, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26422776

RESUMO

Vanadium dioxide (VO2) has drawn significant attention for its unique metal-to-insulator transition near the room temperature. The high electrical resistivity below the transition temperature (∼68 °C) is a result of the strong electron correlation with the assistance of lattice (Peierls) distortion. Theoretical calculations indicated that the strong interelectron interactions might induce intriguing optoelectronic phenomena, such as the multiple exciton generation (MEG), a process desirable for efficient optoelectronics and photovoltaics. However, the resistivity of VO2 is quite temperature sensitive, and therefore, the light-induced conductivity in VO2 has often been attributed to the photothermal effects. In this work, we distinguished the photothermal and photoinjection effects in VO2 nanowires by varying the chopping frequency of the optical illumination. We found that, in our VO2 nanowires, the relatively slow photothermal processes can be well suppressed when the chopping frequency is >2 kHz, whereas the fast photoinjection component (direct photoexcitation of charge carriers) remains constant at all chopping frequencies. By separating the photothermal and photoinjection processes, our work set the basis for further studies of carrier dynamics under optical excitations in strongly correlated materials.


Assuntos
Luz , Nanofios , Óxidos/química , Compostos de Vanádio/química
10.
Nano Lett ; 15(10): 6909-13, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26379092

RESUMO

Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface emitting lasers, fiber Bragg gratings, and single-frequency laser diodes. This work introduces nanoscale DBRs integrated directly into gallium nitride (GaN) nanowire waveguides. Photonic band gaps that are tunable across the visible spectrum are demonstrated by precisely controlling the grating's parameters. Numerical simulations indicate that in-wire DBRs have significantly larger reflection coefficients in comparison with the nanowire's end facet. By comparing the measured spectra with the simulated spectra, the index of refraction of the GaN nanowire waveguides was extracted to facilitate the design of photonic coupling structures that are sensitive to phase-matching conditions. This work indicates the potential to design nanowire-based devices with improved performance for optical resonators and optical routing.

11.
Phys Chem Chem Phys ; 17(41): 27317-27, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26280744

RESUMO

Microwave chemistry has revolutionized synthetic methodology for the preparation of organics, pharmaceuticals, materials, and peptides. The enhanced reaction rates commonly observed in a microwave have led to wide speculation about the function of molecular microwave absorption and whether the absorption leads to microwave specific effects and enhanced molecular heating. The comparison of theoretical modeling, reactor vessel design, and dielectric spectroscopy allows the nuance of the interaction to be directly understood. The study clearly shows an unaltered silicon carbide vessel allows measurable microwave penetration and therefore, molecular absorption of the microwave photons by the reactants within the reaction vessel cannot be ignored when discussing the role of molecular heating in enhanced molecular reactivity for microwave synthesis. The results of the study yield an improved microwave reactor vessel design that eliminates microwave leakage into the reaction volume by incorporating a noble metal surface layer onto a silicon carbide reaction vessel. The systematic study provides the necessary theory and measurements to better inform the arguments in the field.

12.
Adv Mater ; 26(14): 2137-84, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24604701

RESUMO

Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies.


Assuntos
Nanofios/química , Semicondutores , Animais , Aniversários e Eventos Especiais , Fontes de Energia Elétrica , Endoscopia/instrumentação , Humanos , Nanotecnologia/métodos , Neurônios/fisiologia , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Processos Fotoquímicos
13.
Proc Natl Acad Sci U S A ; 110(3): 865-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23284173

RESUMO

The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints and low power consumption. Although much effort has been directed toward controlling their size, shape, and composition, most nanowire lasers currently suffer from emitting at multiple frequencies simultaneously, arising from the longitudinal modes native to simple Fabry-Pérot cavities. Cleaved-coupled cavities, two Fabry-Pérot cavities that are axially coupled through an air gap, are a promising architecture to produce single-frequency emission. The miniaturization of this concept, however, imposes a restriction on the dimensions of the intercavity gaps because severe optical losses are incurred when the cross-sectional dimensions of cavities become comparable to the lasing wavelength. Here we theoretically investigate and experimentally demonstrate spectral manipulation of lasing modes by creating cleaved-coupled cavities in gallium nitride (GaN) nanowires. Lasing operation at a single UV wavelength at room temperature was achieved using nanoscale gaps to create the smallest cleaved-coupled cavities to date. Besides the reduced number of lasing modes, the cleaved-coupled nanowires also operate with a lower threshold gain than that of the individual component nanowires. Good agreement was found between the measured lasing spectra and the predicted spectral modes obtained by simulating optical coupling properties. This agreement between theory and experiment presents design principles to rationally control the lasing modes in cleaved-coupled nanowire lasers.

14.
ACS Nano ; 6(1): 234-40, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22147636

RESUMO

Photocatalytic water splitting represents a promising way to produce renewable hydrogen fuel from solar energy. Ultrathin semiconductor electrodes for water splitting are of particular interest because the optical absorption occurs in the region where photogenerated charge carriers can effectively contribute to the chemical reactions on the surface. It is therefore important to manipulate and concentrate the incident light so that more photons can be absorbed within the thin film. Here we show an enhanced photocurrent in a thin-film iron oxide photoanode coated on arrays of Au nanopillars. The enhancement can be attributed primarily to the increased optical absorption originating from both surface plasmon resonances and photonic-mode light trapping in the nanostructured topography. The resonances can be tuned to a desirable wavelength by varying the thickness of the iron oxide layer. A net enhancement as high as 50% was observed over the solar spectrum.


Assuntos
Cristalização/métodos , Compostos Férricos/química , Ouro/química , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Ressonância de Plasmônio de Superfície/métodos , Catálise/efeitos da radiação , Compostos Férricos/efeitos da radiação , Ouro/efeitos da radiação , Luz , Teste de Materiais , Tamanho da Partícula
15.
Nano Lett ; 11(12): 5189-95, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22082022

RESUMO

In recent photovoltaic research, nanomaterials have offered two new approaches for trapping light within solar cells to increase their absorption: nanostructuring the absorbing semiconductor and using metallic nanostructures to couple light into the absorbing layer. This work combines these two approaches by decorating a single-nanowire silicon solar cell with an octahedral silver nanocrystal. Wavelength-dependent photocurrent measurements and finite-difference time domain simulations show that increases in photocurrent arise at wavelengths corresponding to the nanocrystal's surface plasmon resonances, while decreases occur at wavelengths corresponding to optical resonances of the nanowire. Scanning photocurrent mapping with submicrometer spatial resolution experimentally confirms that changes in the device's photocurrent come from the silver nanocrystal. These results demonstrate that understanding the interactions between nanoscale absorbers and plasmonic nanostructures is essential to optimizing the efficiency of nanostructured solar cells.

16.
Nano Lett ; 11(9): 3792-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21859081

RESUMO

External quantum efficiency (EQE) of photoluminescence as high as 20% from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.


Assuntos
Espectrometria de Massas/métodos , Nanotecnologia/métodos , Óxido de Zinco/química , Elétrons , Luz , Luminescência , Microscopia/métodos , Nanoestruturas/química , Nanofios , Óptica e Fotônica , Fotoquímica/métodos , Pós , Teoria Quântica , Semicondutores
17.
Nat Nanotechnol ; 6(9): 568-72, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857684

RESUMO

Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ∼5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.

18.
Nano Lett ; 10(10): 4111-6, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20839781

RESUMO

This paper reports a new type of diffractive microlens based on finite-areas of two-dimensional arrays of circular nanoholes (patches). The plasmonic microlenses can focus single wavelengths of light across the entire visible spectrum as well as broadband white light with little divergence. The focal length is determined primarily by the overall size of the patch and is tolerant to significant changes in patch substructure, including lattice geometry and local order of the circular nanoholes. The optical throughput, however, depends sensitively on the patch substructure and is determined by the wavelengths of surface plasmon resonances. This simple diffractive lens design enables millions of broadband plasmonic microlenses to be fabricated in parallel using soft nanolithographic techniques.

19.
Nano Lett ; 10(8): 3173-8, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698633

RESUMO

This paper describes three-dimensional (3D) nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission, which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície
20.
Nano Lett ; 10(7): 2549-54, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20509678

RESUMO

This paper describes how angle-dependent resonances from molded plasmonic crystals can be used to improve real-time biosensing. First, an inexpensive and massively parallel approach to create single-use, two-dimensional metal nanopyramidal gratings was developed. Second, although constant in bulk dielectric environments, the sensitivities (resonance wavelength shift and resonance width) of plasmonic crystals to adsorbed molecular layers of varying thickness were found to depend on incident excitation angle. Third, protein binding at dilute concentrations of protein was carried out at an angle that optimized the signal to noise of our plasmonic sensing platform. This angle-dependent sensitivity, which is intrinsic to grating-based sensors, is a critical parameter that can assist in maximizing signal to noise.


Assuntos
Arachis/química , Dissacarídeos/metabolismo , Lectinas/metabolismo , Proteínas de Plantas/metabolismo , Ressonância de Plasmônio de Superfície/instrumentação , Dissacarídeos/química , Lectinas/análise , Microtecnologia , Proteínas de Plantas/análise , Ligação Proteica , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA