Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36930975

RESUMO

Recent experiments confirm that two-dimensional (2D) boron nitride (BN) films possess room-temperature out-of-plane ferroelectricity when each BN layer is sliding with respect to each other. This ferroelectricity is attributed to the interlayered orbital hybridization or interlayer charge transfer in previous work. In this work, we attempt to understand the sliding ferroelectricity from the perspective of orbital distortion of long-pair electrons. Using the maximally localized Wannier function (MLWF) method and first-principles calculations, the out-of-plane pz orbitals of BN are investigated. Our results indicate that the interlayer van der Waals interaction causes the distortion of the N pz orbitals. Based on the picture of out-of-plane orbital distortion, we propose a possible mechanism to tune the ferroelectric polarization by external fields, including electric field and stress field. It is found that both the polarization intensity and direction can be modulated under the electric field. The polarization intensity of the system can also be controlled by stress field perpendicular to the plane. This study will provide theoretical help in the device design based on sliding ferroelectrics. .

2.
Innovation (Camb) ; 4(2): 100399, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36923023

RESUMO

The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetization re-orientation from easy axes to hard ones in magnetic field, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic state and establishes a novel manner to engineer the magneto-transport behaviors of correlated electrons for future topological spintronics.

3.
Nanoscale ; 15(12): 5825-5833, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857709

RESUMO

Tailoring the interlayer twist angle of bilayer graphene (BLG) significantly affects its electronic properties, including its superconductivity, topological transitions, ferromagnetic states, and correlated insulating states. These exotic electronic properties are sensitive to the work functions of BLG samples. In this study, the twist angle-dependent work functions of chemical vapour deposition-grown twisted bilayer graphene (tBLG) were investigated in detail using Kelvin probe force microscopy (KPFM) in combination with Raman spectroscopy. The thickness-dependent surface potentials of Bernal-stacked multilayer graphene were measured. It is found that with the increase in the number of layers, the work function decreases and tends to saturate. Bernal-stacked BLG and tBLG were determined via KPFM due to their twist angle-specific surface potentials. The detailed relationship between the twist angle and surface potential was determined via in situ KPFM and Raman spectral measurements. With the increase in the twist angle, the work function of tBLG will increase rapidly and then increase slowly when it is greater than 5°. The thermal stability of tBLG was investigated through a controlled annealing process. tBLG will become Bernal-stacked BLG after annealing at 350 °C. Our work provides the twist angle-dependent surface potentials of tBLG and provides the relevant conditions for the stability of the twist angle, which lays the foundation for further exploration of its twist angle-dependent electronic properties.

4.
Nat Commun ; 14(1): 1018, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823140

RESUMO

Stacking two-dimensional layered materials such as graphene and transitional metal dichalcogenides with nonzero interlayer twist angles has recently become attractive because of the emergence of novel physical properties. Stacking of one-dimensional nanomaterials offers the lateral stacking offset as an additional parameter for modulating the resulting material properties. Here, we report that the edge states of twisted bilayer zigzag graphene nanoribbons (TBZGNRs) can be tuned with both the twist angle and the stacking offset. Strong edge state variations in the stacking region are first revealed by density functional theory (DFT) calculations. We construct and characterize twisted bilayer zigzag graphene nanoribbon (TBZGNR) systems on a Au(111) surface using scanning tunneling microscopy. A detailed analysis of three prototypical orthogonal TBZGNR junctions exhibiting different stacking offsets by means of scanning tunneling spectroscopy reveals emergent near-zero-energy states. From a comparison with DFT calculations, we conclude that the emergent edge states originate from the formation of flat bands whose energy and spin degeneracy are highly tunable with the stacking offset. Our work highlights fundamental differences between 2D and 1D twistronics and spurs further investigation of twisted one-dimensional systems.

5.
ACS Nano ; 17(3): 2702-2710, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36661840

RESUMO

Layered charge-density-wave (CDW) materials have gained increasing interest due to their CDW stacking-dependent electronic properties for practical applications. Among the large family of CDW materials, those with star of David (SOD) patterns are very important due to the potentials for quantum spin liquid and related device applications. However, the spatial extension and the spin coupling information down to the nanoscale remain elusive. Here, we report the study of heterochiral CDW stackings in bilayer (BL) NbSe2 with high spatial resolution. We reveal that there exist well-defined heterochiral stackings, which have inhomogeneous electronic states among neighboring CDW units (star of David, SOD), significantly different from the homogeneous electronic states in the homochiral stackings. Intriguingly, the different electronic behaviors are spatially localized within each SOD with a unit size of 1.25 nm, and the gap sizes are determined by the different types of SOD stackings. Density functional theory (DFT) calculations match the experimental measurements well and reveal the SOD-stacking-dependent correlated electronic states and antiferromagnetic/ferromagnetic couplings. Our findings give a deep understanding of the spatial distribution of interlayer stacking and the delicate modulation of the spintronic states, which is very helpful for CDW-based nanoelectronic devices.

6.
ACS Nano ; 17(3): 2450-2459, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716185

RESUMO

Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.

7.
Sci Bull (Beijing) ; 67(21): 2176-2185, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545993

RESUMO

The vanadium-based kagome superconductor CsV3Sb5 has attracted tremendous attention due to its unexcepted anomalous Hall effect (AHE), charge density waves (CDWs), nematicity, and a pseudogap pair density wave (PDW) coexisting with unconventional strong-coupling superconductivity. The origins of CDWs, unconventional superconductivity, and their correlation with different electronic states in this kagome system are of great significance, but so far, are still under debate. Chemical doping in the kagome layer provides one of the most direct ways to reveal the intrinsic physics, but remains unexplored. Here, we report, for the first time, the synthesis of Ti-substituted CsV3Sb5 single crystals and its rich phase diagram mapping the evolution of intertwining electronic states. The Ti atoms directly substitute for V in the kagome layers. CsV3-xTixSb5 shows two distinct superconductivity phases upon substitution. The Ti slightly-substituted phase displays an unconventional V-shaped superconductivity gap, coexisting with weakening CDW, PDW, AHE, and nematicity. The Ti highly-substituted phase has a U-shaped superconductivity gap concomitant with a short-range rotation symmetry breaking CDW, while long-range CDW, twofold symmetry of in-plane resistivity, AHE, and PDW are absent. Furthermore, we also demonstrate the chemical substitution of V atoms with other elements such as Cr and Nb, showing a different modulation on the superconductivity phases and CDWs. These findings open up a way to synthesise a new family of doped CsV3Sb5 materials, and further represent a new platform for tuning the different correlated electronic states and superconducting pairing in kagome superconductors.

8.
Nano Lett ; 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36343338

RESUMO

α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band's dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs' optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices.

9.
Nat Commun ; 13(1): 6146, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253383

RESUMO

Selective C-H bond activation is one of the most challenging topics for organic reactions. The difficulties arise not only from the high C-H bond dissociation enthalpies but also the existence of multiple equivalent/quasi-equivalent reaction sites in organic molecules. Here, we successfully achieve the selective activation of four quasi-equivalent C-H bonds in a specially designed nitrogen-containing polycyclic hydrocarbon (N-PH). Density functional theory calculations reveal that the adsorption of N-PH on Ag(100) differentiates the activity of the four ortho C(sp3) atoms in the N-heterocycles into two groups, suggesting a selective dehydrogenation, which is demonstrated by sequential-annealing experiments of N-PH/Ag(100). Further annealing leads to the formation of N-doped graphene nanoribbons with partial corannulene motifs, realized by the C-H bond activation process. Our work provides a route of designing precursor molecules with ortho C(sp3) atom in an N-heterocycle to realize surface-induced selective dehydrogenation in quasi-equivalent sites.

10.
Adv Mater ; : e2207041, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281800

RESUMO

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

11.
Nat Commun ; 13(1): 5510, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127321

RESUMO

Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo4O7 material. We reveal that the surface of YBaCo4O7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo4O7 composes of corner-sharing only CoO4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER.

12.
Adv Sci (Weinh) ; 9(32): e2204247, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104244

RESUMO

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2 /Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2 , MoSe2 ) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions.

13.
ACS Appl Mater Interfaces ; 14(34): 39489-39496, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976742

RESUMO

The physical properties of copper oxide high-temperature superconductors have been studied extensively, such as the band structure and doping effects of Bi2Sr2CaCu2O8+δ (Bi-2212). However, some chemical-related properties of these superconductors are rarely reported, such as their stability in water-bearing environments. Herein, we report experiments combined with ab initio calculations that address the effects of water in contact with Bi-2212. The evolution of Bi-2212 flakes with exposure to water for different time intervals was tested and characterized by optical microscopy (OM), atomic force microscopy (AFM), Raman spectroscopy, transmission electron microscopy (TEM), and electrical measurements. The thickness of Bi-2212 flakes is gradually decreased in water, and some thin flakes can be completely etched away after a few days. The stability of Bi-2212 in other solvents is also evaluated, including alcohol, acetone, HCl, and KOH. The morphology of Bi-2212 flakes is relatively stable in organic solvents. However, the flakes are etched relatively quick in HCl and KOH, especially in an acidic environment. Our results imply that hydrogen ions are primarily responsible for the deterioration of their properties. Both TEM and calculation results demonstrate that the atoms in the Bi-O plane are relatively stable when compared to the inner atoms in Sr-O, Ca-O, and Cu-O planes. This work contributes toward understanding the chemical stability of a Bi-2212 superconducting device in environmental medium, which is important for both fundamental studies and practical applications of copper oxide high-temperature superconductors.

14.
Nat Commun ; 13(1): 4225, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869069

RESUMO

Flat bands in Van der Waals heterostructure provide an ideal platform for unveiling emergent quantum electronic phases. One celebrated example is twisted monolayer-bilayer graphene, in which the effects of electronic correlation have been observed. Here, we report the observation via scanning tunnelling microscopy and spectroscopy of correlated insulating states in twisted monolayer-bilayer graphene, leading to the formation of an electron crystal phase. At integer fillings, the strong Coulomb interaction redistributes flat-band electrons within one moiré unit cell, producing an insulating state with vanishing density of states at the Fermi level. Moreover, our approach enables the direct visualization of an ordered lattice of topological torus-shaped states, generated by the interaction between the electron crystal and the non-trivial band topology of twisted monolayer-bilayer graphene. Our results illustrate an efficient strategy for entwining topological physics with strong electron correlation in twisted van der Waals structures.

15.
Adv Mater ; 34(35): e2204779, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816107

RESUMO

Monolayer Six Cy constitutes an important family of 2D materials that is predicted to feature a honeycomb structure and appreciable bandgaps. However, due to its binary chemical nature and the lack of bulk polymorphs with a layered structure, the fabrication of such materials has so far been challenging. Here, the synthesis of atomic monolayer Si9 C15 on Ru (0001) and Rh(111) substrates is reported. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and density functional theory (DFT) calculations is used to infer that the 2D lattice of Si9 C15 is a buckled honeycomb structure. Monolayer Si9 C15 shows semiconducting behavior with a bandgap of ≈1.9 eV. Remarkably, the Si9 C15 lattice remains intact after exposure to ambient conditions, indicating good air stability. The present work expands the 2D-materials library and provides a promising platform for future studies in nanoelectronics and nanophotonics.

16.
Nature ; 606(7916): 890-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676489

RESUMO

Majorana zero modes (MZMs) obey non-Abelian statistics and are considered building blocks for constructing topological qubits1,2. Iron-based superconductors with topological bandstructures have emerged as promising hosting materials, because isolated candidate MZMs in the quantum limit have been observed inside the topological vortex cores3-9. However, these materials suffer from issues related to alloying induced disorder, uncontrolled vortex lattices10-13 and a low yield of topological vortices5-8. Here we report the formation of an ordered and tunable MZM lattice in naturally strained stoichiometric LiFeAs by scanning tunnelling microscopy/spectroscopy. We observe biaxial charge density wave (CDW) stripes along the Fe-Fe and As-As directions in the strained regions. The vortices are pinned on the CDW stripes in the As-As direction and form an ordered lattice. We detect that more than 90 per cent of the vortices are topological and possess the characteristics of isolated MZMs at the vortex centre, forming an ordered MZM lattice with the density and the geometry tunable by an external magnetic field. Notably, with decreasing the spacing of neighbouring vortices, the MZMs start to couple with each other. Our findings provide a pathway towards tunable and ordered MZM lattices as a platform for future topological quantum computation.

17.
Nat Commun ; 13(1): 2914, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614101

RESUMO

In Weyl semimetals, charge density wave (CDW) order can spontaneously break the chiral symmetry, gap out the Weyl nodes, and drive the material into the axion insulating phase. Investigations have however been limited since CDWs are rarely seen in Weyl semimetals. Here, using scanning tunneling microscopy/spectroscopy (STM/S), we report the discovery of a novel unidirectional CDW order on the (001) surface of chiral crystal CoSi - a unique Weyl semimetal with unconventional chiral fermions. The CDW is incommensurate with both lattice momentum and crystalline symmetry directions, and exhibits an intra unit cell π phase shift in the layer stacking direction. The tunneling spectrum shows a particle-hole asymmetric V-shaped energy gap around the Fermi level that modulates spatially with the CDW wave vector. Combined with first-principle calculations, we identify that the CDW is locked to the crystal chirality and is related by a mirror reflection between the two enantiomers of the chiral crystal. Our findings reveal a novel correlated topological quantum state in chiral CoSi crystals and raise the potential for exploring the unprecedented physical behaviors of unconventional chiral fermions.

18.
Phys Chem Chem Phys ; 24(16): 9082-9117, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383791

RESUMO

Over the past decades, construction of nanoscale electronic devices with novel functionalities based on low-dimensional structures, such as single molecules and two-dimensional (2D) materials, has been rapidly developed. To investigate their intrinsic properties for versatile functionalities of nanoscale electronic devices, it is crucial to precisely control the structures and understand the physical properties of low-dimensional structures at the single atomic level. In this review, we provide a comprehensive overview of the construction of nanoelectronic devices based on single molecules and 2D materials and the investigation of their physical properties. For single molecules, we focus on the construction of single-molecule devices, such as molecular motors and molecular switches, by precisely controlling their self-assembled structures on metal substrates and charge transport properties. For 2D materials, we emphasize their spin-related electrical transport properties for spintronic device applications and the role that interfaces among 2D semiconductors, contact electrodes, and dielectric substrates play in the electrical performance of electronic, optoelectronic, and memory devices. Finally, we discuss the future research direction in this field, where we can expect a scientific breakthrough.

19.
Nat Commun ; 13(1): 1843, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383190

RESUMO

Chirality is essential for various phenomena in life and matter. However, chirality and its switching in electronic superlattices, such as charge density wave (CDW) superlattices, remain elusive. In this study, we characterize the chirality switching with atom-resolution imaging in a single-layer NbSe2 CDW superlattice by the technique of scanning tunneling microscopy. The atomic arrangement of the CDW superlattice is found continuous and intact although its chirality is switched. Several intermediate states are tracked by time-resolved imaging, revealing the fast and dynamic chirality transition. Importantly, the switching is reversibly realized with an external electric field. Our findings unveil the delicate switching process of chiral CDW superlattice in a two-dimensional (2D) crystal down to the atomic scale.

20.
J Phys Chem Lett ; 13(8): 1901-1907, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35179388

RESUMO

Controlling charge-density-wave (CDW) orders in two-dimensional (2D) crystals has attracted a great deal of interest because of their fundamental physics and their demand inse in miniaturized devices. In this work, we systematically studied the size-dependent CDW orders in single-layer hetero/homo-NbSe2 stacking junctions. We found that the CDW orders in the top 1T-NbSe2 layer of the junctions are highly dependent on its lateral size. For the 1T/2H-NbSe2 heterojunction, the critical lateral size of 1T-NbSe2 islands for the formation of well-defined CDW orders is ∼26 nm, whereas below 15 nm, the CDW orders melt. However, for the 1T/1T-NbSe2 homojunction, the CDW orders in the islands can persist even with a lateral size of <11 nm. Our findings illuminate the fresh phenomenon of size-dependent CDW orders existing in 2D van der Waals hetero/homojunctions and provide useful information for the control of CDW orders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...