Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Biomaterials ; 264: 120446, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33069134

RESUMO

Although antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA). The FP-engineered implant exhibits over 96.8% antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and methicillin-resistant S. aureus), being stronger than that modified with mixed peptides. This can be mechanistically attributed to the larger bacterial accessible surface area of HHC36 sequence. Notably, the implant can simultaneously enhance cellular proliferation, up-regulate expressions of angiogenesis-related genes/proteins (VEGF and VEGFR-2) of HUVECs and osteogenesis-related genes/proteins (ALP, COL-1, RUNX-2, OPN and OCN) of hBMSCs. In vivo assay with infection and non-infection bone-defect model reveals that the FP-engineered implant can kill 99.63% of S. aureus, and simultaneously promote vascularization and osseointegration. It is believed that this study presents an excellent strategy for developing "statically-versatile" orthopedic implants.

2.
J Agric Food Chem ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185088

RESUMO

The discovery of novel succinate dehydrogenase inhibitors (SDHIs) has attracted great attention worldwide. Herein, a fragment recombination strategy was proposed to design new SDHIs by understanding the ligand-receptor interaction mechanism of SDHIs. Three fragments, pyrazine from pyraziflumid, diphenyl-ether from flubeneteram, and a prolonged amide linker from pydiflumetofen and fluopyram, were identified and recombined to produce a pyrazine-carboxamide-diphenyl-ether scaffold as a new SDHI. After substituent optimization, compound 6y was successfully identified with good inhibitory activity against porcine SDH, which was about 2-fold more potent than pyraziflumid. Furthermore, compound 6y exhibited 95% and 80% inhibitory rates against soybean gray mold and wheat powdery mildew at a dosage of 100 mg/L in vivo assay, respectively. The results of the present work showed that the pyrazine-carboxamide-diphenyl-ether scaffold could be used as a new starting point for the discovery of new SDHIs.

3.
J Ethnopharmacol ; : 113559, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33159994

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Realgar has been used in traditional remedies for a long history in China and India. It is clinically used to treat diverse cancers, especially acute promyelocytic leukemia (APL), chronic myelogenous leukemia (CML) in China. However, paradoxic roles of realgar to increase or decrease immunity are reported. It is urgent to address this question, due to immune depression can be strongly benefit to cancer development, but detrimental to patients. AIM OF THE STUDY: This present work is to explore whether realgar promote or suppress immune responses, and shed light on its mode of action. Our results should provide cues for rational strategy to explore realgar for clinical use. MATERIAL AND METHODS: Infection model in vivo was established by using Enterococcus faecalis to attack Caenorhabditis elegans, then realgar was used to treat the infected worms to investigate its effects on infectivity and the underlying mechanism. Killing analysis was carried out to test whether realgar can mitigate worm infection. Thermotolerance resistance analysis was used to evaluate if realgar functions hormetic effect. Quantification of live E. faecalis in nematode intestine was employed to ascertain if realgar alleviate the bacterial load in worm gut. Quantitative real-time PCR (qRT-PCR) was used to test the expression of antibacterial effectors. Western blot was used to test the effect of realgar on the expressions of p38 and phospho-p38 in worms infected by E. faecalis. RESULTS: Realgar alleviated the infected worms in strains of N2, glp-4, and daf-2, but failed in sek-1, glp-4; sek-1, and daf-2; daf-16 when p38 MAPK or daf-16 was blocked or inactivated. Western blot assay demonstrated that realgar increased the expression of phosph-p38. Thermotolerance assay showed that realgar played a hormetic role on nemtodes, triggered protective response and reduced bacterial load after realgar treatment for 120 h qRT-PCR demonstrated that realgar significantly increased antibacterial effectors, thus leading to pathogen elimination. CONCLUSION: Realgar increased defenses against E. faecalis in C. elegans by inducing both immune responses and protective responses. It was regulated by p38 MAPK pathway and DAF-16.

4.
Chemosphere ; : 128715, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33160651

RESUMO

PM2.5-attributable deaths and years of life lost (YLL) due to specific causes during 1998-2015 in India were estimated using the integrated exposure-response (IER) model. The estimated PM2.5-mortality in India revealed an annual increasing rate of 2.7% during the study period. Spatially, deaths due to the exposure to ambient PM2.5 concentrated mostly in populated North India, and four northern states contributed 43% to the national PM2.5-attributable deaths in 2015. PM2.5-attributable deaths in India increased by 21% during 1998-2015 due to the changes of PM2.5 only, and deaths due to lung cancer (LC) revealed the largest sensitivity to increasing ambient PM2.5. The findings of this study suggest that aggressive air pollution control strategies should be implemented in North India due to their dominant contributions to the current health risks. Moreover, the rapid growth of LC related deaths with increasing ambient PM2.5 should not be neglected.

5.
Bioorg Med Chem ; : 115862, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33218898

RESUMO

Aberrant signaling of the FGF/FGFR pathway occurs frequently in cancers and is an oncogenic driver in many solid tumors, especially liver cancer. With the resurgence of interest in irreversible inhibitors, efforts have been directed to the discovery of irreversible FGFR4 inhibitors. Currently, several selective irreversible inhibitors containing pyrrolo[2,3-b]pyridine-3-one and pyrrolo[2,3-d]pyrimidin-2-amine skeletons were designed and synthesized as FGFR4 inhibitors. Among the screened compounds, derivative 25 showed excellent enzymatic inhibitory activity (IC50, 51.6 nM) and antiproliferative potency of 0.1397 µM against Hep3B cell lines. Compound 25 exhibited good in vitro human liver microsomal stability with the half-life of 62.0 min, which was more stable than BLU9931 (46.7 min). But the in vivo pharmacokinetic results showed that the oral bioavailability was only 6.65%, which needs to be improved in the next work. These results showed that compound 25 might be an effective lead compound for further investigation to treat the hepatocellular carcinoma.

6.
Mol Imaging Biol ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206335

RESUMO

Glucarate, a physiologic end-product of the D-glucuronic acid pathway in mammals, is a six-carbon dicarboxylic acid with a wide range of uses. Glucarate-based molecular imaging probes including [99mTc]glucarate and [18F]glucarate have been developed and demonstrated to have infarct/necrosis-avid and/or tumor-seeking properties, showing potential applications in early detection of myocardial infarction, evaluation of tissue viability, monitoring of therapeutic effectiveness, and noninvasive imaging of certain tumors including drug-resistant ones. The mechanism by which [99mTc]glucarate localizes in acute necrotic tissues has been demonstrated to be largely attributable to its binding to the positively charged histones, which become accessible after the disruption of the cell and nuclear membranes as a result of irreversible damage, while the tumor-seeking mechanism of [99mTc]glucarate has been found to be closely related to glucose transporter 5 expression. Moreover, the recently developed [18F]glucarate provides a new alternative probe for positron emission tomography imaging and may have potential advantages over [99mTc]glucarate. In this review, we present the untiring pursuit for glucarate-based molecular imaging probes as infarct/necrosis-avid agent and/or tumor-seeking agent. Moreover, the limitations and the prospects for future research of glucarate-based molecular probes are also discussed.

7.
J Am Chem Soc ; 142(46): 19602-19610, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108194

RESUMO

NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP+ and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1ß, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.

8.
JCI Insight ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108350

RESUMO

Caspase 8 (CASP8) is one of the most frequently mutated genes in head and neck squamous carcinomas (HNSCC), and CASP8 mutations are associated with poor survival. The distribution of these mutations in HNSCC suggests that they are likely to be inactivating. Inhibition of CASP8 has been reported to sensitize cancer cells to necroptosis, a regulated cell death mechanism. Here, we show that knockdown of CASP8 renders HNSCCs susceptible to necroptosis by a second mitochondria-derived activator of caspase (SMAC) mimetic, Birinapant, in combination with pan-caspase inhibitors zVAD FMK or Emricasan and radiation. In a syngeneic mouse model of oral cancer, Birinapant, particularly when combined with radiation delayed tumor growth and enhanced survival under CASP8 loss. Exploration of molecular underpinnings of necroptosis sensitivity confirmed that the level of functional receptor-interacting serine/threonine-protein kinase 3 (RIP3) determines susceptibility to this mode of death. Although an in vitro screen revealed that low RIP3 levels render many HNSCC cell lines resistant to necroptosis, patient tumors maintain RIP3 expression and should therefore remain sensitive. Collectively, these results suggest that targeting the necroptosis pathway with SMAC mimetics, especially in combination with radiation, may be relevant therapeutically in HNSCC with compromised CASP8 status, provided that RIP3 function is maintained.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33112653

RESUMO

Background: To research the influences of a Chinese traditional medicine (Citrus aurantium L.) on gastric cancer proliferation and mice gastrointestinal motility. Materials and Methods: The intestinal transit rates (ITRs) and gastric emptying (GE) values in mice with experimentally induced gastrointestinal motility dysfunction (GMD) and in normal mice were calculated to research the in vivo influences of C. aurantium L. on gastrointestinal motility. CCK-8 was used to examined the effect of C. aurantium L. on gastric cancer proliferation. Results: The GE and ITR values were dose-dependently and notably added by C. aurantium L. in normal ICR mice (with 1 g/kg C. aurantium L., ITR values: 53.3% ± 0.8% versus 64.3% ± 0.9% and 53.3% ± 0.8% versus 79.8% ± 2.0%, p < 0.01; GE values: 59.3% ± 0.8% versus 70.1% ± 1.9% and 59.9% ± 0.8% versus 69.9% ± 2.1%, p < 0.01). Compared with the normal mice, the GMD mice's ITRs were notably declined; however, C. aurantium L. could dose-dependently and significantly reverse it. In addition, in the model of delayed GE induced by loperamide and cisplatin, C. aurantium L. administration reversed the GE deficit. Furthermore, C. aurantium L. significantly reduced gastric cancer proliferation. Conclusion: The results indicate that C. aurantium L. could become a new drug for gastrointestinal prokinetic and gastric cancer therapy.

10.
J Int Med Res ; 48(10): 300060520921640, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33045875

RESUMO

OBJECTIVE: To assess the diagnostic value of the Xpert® MTB/RIF (GeneXpert) assay for tracheobronchial tuberculosis (TBTB) using bronchial washing fluid (BWF). METHODS: This retrospective study enrolled patients suspected of having TBTB and patients with non-TB pulmonary disease as controls. BWF were used to undertake acid-fast bacillus (AFB) smears, the GeneXpert assay and the LÓ§wenstein-Jensen (LJ) culture method. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were compared among BWF AFB smears, BWF GeneXpert and the BWF LJ culture method. RESULTS: A total of 130 patients with TBTB and 102 patients with non-TB pulmonary disease were enrolled in the study. Sputum AFB smears were positive in 62 of 130 patients (47.7%) with TBTB. Using the clinical diagnosis of TBTB as the gold standard, the sensitivity, specificity, PPV and NPV of the three methods using BWF were as follows: 93.1%, 99.0%, 99.2% and 91.8% for BWF GeneXpert; 73.1%, 100.0%, 100.0% and 74.5% for BWF LJ cultures; 53.8%, 99.0%, 98.6% and 62.7% for BWF AFB smears. The diagnostic yield of BWF GeneXpert was significantly higher compared with BWF cultures for type III and IV TBTB. CONCLUSION: The Xpert® MTB/RIF assay using BWF exhibited higher sensitivity than bacteriological diagnostic methods and was particularly useful for the early diagnosis of smear-negative TBTB.

11.
Aging (Albany NY) ; 12(19): 19012-19021, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052879

RESUMO

Apremilast is a phosphodiesterase 4 (PDE4) inhibitor used in the treatment of psoriasis and several other inflammatory diseases. Interest has been expressed in seeking out therapies that address both psoriasis and atherosclerosis. In the present study, we explored the effects of apremilast in human aortic endothelial cells (HAECs) exposed to oxidized low-density lipoprotein (ox-LDL) to simulate the atherosclerotic microenvironment in vitro. Our findings indicate that apremilast may reduce the expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1), the main ox-LDL scavenging receptor. Apremilast also inhibited the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8), which are deeply involved in the chronic inflammatory response associated with atherosclerosis. Interestingly, we found that apremilast inhibited the attachment of U937 monocytes to HAECs by reducing the expression of the chemokine monocyte chemotactic protein 1 (MCP-1) and the cellular adhesion molecule vascular cell adhesion molecule-1 (VCAM-1). This effect was found to be mediated through the rescue of Krüppel like factor 6 (KLF6) expression, which was reduced in response to ox-LDL via increased phosphorylation of c-Jun N-terminal kinase (JNK). These findings suggest a potential role for apremilast in the treatment of atherosclerosis.

12.
Sci Total Environ ; : 142275, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33077214

RESUMO

This study examines the sensitivity of daily PM2.5 to NOx emissions and meteorology using in situ observations from main cities of North China (NC). NC cities are divided into low-, medium-, and high-emission groups by the ranking of their 4-year mean NO2. For each emission group, daily NO2 levels are used to divide the days into good-, medium-, and bad-meteorological conditions. Regardless of their emission levels, all cities reveal significant decreases (96%-172%) in daily PM2.5 levels from bad to good meteorological conditions. The largest difference in PM2.5 concentrations between the emissions groups is found under bad meteorological conditions, with 56% higher PM2.5 in high-emission cities than low-emission cities, indicating PM2.5 under bad meteorological conditions has the largest sensitivity to emissions. The high-emission, bad-meteorology group saw a 24% decrease in mean daily PM2.5 levels from 2017, a high-emission year, to 2019, a low-emission year. However, under good meteorological conditions, the high-emissions group shows an increase of 8.8 µg/m3 in mean daily PM2.5 from 2017 to 2019 with a 2.6% increase in the possibility of high PM2.5. These results suggest the current emission reduction measures are more effective in controlling PM2.5 in high-emission cities under bad meteorological conditions than under other meteorological conditions.

13.
Cell Mol Life Sci ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078207

RESUMO

Tau is a microtubule-associated protein involved in regulation of assembly and spatial organization of microtubule in neurons. However, in pathological conditions, tau monomers assemble into amyloid filaments characterized by the cross-ß structures in a number of neurodegenerative diseases known as tauopathies. In this review, we summarize recent progression on the characterization of structures of tau monomer and filament, as well as the dynamic liquid droplet assembly. Our aim is to reveal how post-translational modifications, amino acid mutations, and interacting molecules modulate the conformational ensemble of tau monomer, and how they accelerate or inhibit tau assembly into aggregates. Structure-based aggregation inhibitor design is also discussed in the context of dynamics and heterogeneity of tau structures.

14.
PLoS Med ; 17(10): e1003351, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33125374

RESUMO

BACKGROUND: Metabolically healthy obesity (MHO) and its transition to unhealthy metabolic status have been associated with risk of cardiovascular disease (CVD) in Western populations. However, it is unclear to what extent metabolic health changes over time and whether such transition affects risks of subtypes of CVD in Chinese adults. We aimed to examine the association of metabolic health status and its transition with risks of subtypes of vascular disease across body mass index (BMI) categories. METHODS AND FINDINGS: The China Kadoorie Biobank was conducted during 25 June 2004 to 15 July 2008 in 5 urban (Harbin, Qingdao, Suzhou, Liuzhou, and Haikou) and 5 rural (Henan, Gansu, Sichuan, Zhejiang, and Hunan) regions across China. BMI and metabolic health information were collected. We classified participants into BMI categories: normal weight (BMI 18.5-23.9 kg/m²), overweight (BMI 24.0-27.9 kg/m²), and obese (BMI ≥ 28 kg/m²). Metabolic health was defined as meeting less than 2 of the following 4 criteria (elevated waist circumference, hypertension, elevated plasma glucose level, and dyslipidemia). The changes in obesity and metabolic health status were defined from baseline to the second resurvey with combination of overweight and obesity. Among the 458,246 participants with complete information and no history of CVD and cancer, the mean age at baseline was 50.9 (SD 10.4) years, and 40.8% were men, and 29.0% were current smokers. During a median 10.0 years of follow-up, 52,251 major vascular events (MVEs), including 7,326 major coronary events (MCEs), 37,992 ischemic heart disease (IHD), and 42,951 strokes were recorded. Compared with metabolically healthy normal weight (MHN), baseline MHO was associated with higher hazard ratios (HRs) for all types of CVD; however, almost 40% of those participants transitioned to metabolically unhealthy status. Stable metabolically unhealthy overweight or obesity (MUOO) (HR 2.22, 95% confidence interval [CI] 2.00-2.47, p < 0.001) and transition from metabolically healthy to unhealthy status (HR 1.53, 1.34-1.75, p < 0.001) were associated with higher risk for MVE, compared with stable healthy normal weight. Similar patterns were observed for MCE, IHD, and stroke. Limitations of the analysis included lack of measurement of lipid components, fasting plasma glucose, and visceral fat, and there might be possible misclassification. CONCLUSIONS: Among Chinese adults, MHO individuals have increased risks of MVE. Obesity remains a risk factor for CVD independent of major metabolic factors. Our data further suggest that metabolic health is a transient state for a large proportion of Chinese adults, with the highest vascular risk among those remained MUOO.

15.
Mol Imaging Biol ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048270

RESUMO

PURPOSE: Visualization of tumor necrosis can determine tumor response to therapy. Our previous study showed that the rhein-based magnetic resonance imaging (MRI) contrast agent with alkane linker (GdL2) could clearly image tumor necrosis. However, its water solubility and cell safety needed to be improved. Herein, three rhein-based MRI agents with ether or lysine linkers were designed. PROCEDURES: Three rhein-based MRI agents were synthesized with a tetracarbon ether (GdP1), a hexacarbon ether (GdP2), and a lysine (GdP3) linker, respectively. Their octanol-water partition coefficients (log P) and cytotoxicity were determined. Necrosis avidity of the leading agent was explored on HepG2 cells and ischemia reperfusion-induced liver necrosis (IRLN) rats by MRI. The effect of visualization of tumor necrosis was tested on nude mice with W256 tumor treated by combretastatin-A4 phosphate (CA4P). DNA binding assays were applied to evaluate the possible necrosis-avidity mechanism of the leading agent. RESULTS: The log P of three agents (- 1.66 ± 0.09, - 1.74 ± 0.01, - 1.95 ± 0.01) decreased when compared with GdL2, indicating higher water solubility. GdP1 not only presented lower cytotoxicity and good necrotic affinity in vitro and in vivo, but also can be fast excreted by renal. According to MRI results of tumor, distinct visualization of tumor necrosis can be discernible from 3 to 4.5 h post-injection of GdP1. In DNA-binding assays, the fluorescence quenching constant KSV (1.00 × 104 M-1) and the ultraviolet binding constant Kb (1.11 × 104 M-1) suggested that GdP1 may bind to DNA through intercalation. CONCLUSION: GdP1 may serve as a potential candidate for early evaluation of tumor response to CA4P treatment.

16.
ACS Nano ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030887

RESUMO

Fiber-based sensors are desirable to provide an immersive experience for users in the human-computer interface. We report a hierarchically porous silver nanowire-bacterial cellulose fiber that can be utilized for sensitive detection of both pressure and proximity of human fingers. The conductive fiber was synthesized via continuous wet-spinning at a speed of 20 m/min, with a diameter of 53 µm, the electrical conductivity of 1.3 × 104 S/cm, a tensile strength of 198 MPa, and elongation strain of 3.0% at break. The fibers were coaxially coated with a 10 µm thick poly(dimethylsiloxane) dielectric elastomer to form the fiber sensor element which is thinner than a human hair. Two of the sensor fibers were laid diagonally, and the capacitance changes between the conductive cores were measured in response to pressure and proximity. In the touch mode, a fiber-based sensor experienced monotonic capacitance increase in the pressure range from 0 to 460 kPa, and a linear response with a high sensitivity of 5.49 kPa-1 was obtained in the low-pressure regime (<0.5 kPa). In touchless mode, the sensor is highly sensitive to objects at a distance of up to 30 cm. Also, the fiber can be easily stitched into garments as comfortable and fashionable sensors to detect heartbeat and vocal pulses. A fiber sensor array is able to serve as a touchless piano to play music and accurately determine the proximity of an object. A 2 × 2 array was further shown for two- and three-dimensional location detection of remote objects.

17.
J Ethnopharmacol ; 266: 113411, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32980482

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiantian capsule (TTC), as a functional food, which consists of four herb medicines, including Aloe vera Burm.f. (25%), leaf juices, dried; Cucurbita moschata Duch. (25%), fructus, dried; Poria cocos (Schw.) Wolf. (12.5%), sclerotium, dried; Tremella fuciformis Berk. (12.5%), fruiting bodies, dried, and one extract xylooligosaccharides (25%) from Maize Cob by enzymolysis, has been commonly used in China to ameliorate constipation. AIM OF THE STUDY: The aim of the work is to elucidate the potential laxative mechanisms of TTC in loperamide-induced constipated rats. MATERIALS AND METHODS: LC-MS/MS was employed for analyzing the TTC extract. The gastrointestinal transit was evaluated by X-ray. The H&E and Alcian-Blue stain were applied to determine the changes of goblet cells and mucus layer, respectively. Meanwhile, levels of neurotransmitters were evaluated by enzyme-linked immunosorbent assay. The protein expressions were also measured by immunohistochemistry and Western blot. RESULTS: Our results showed that TTC administration attenuated constipation responses in aspects of fecal pellets number, water content of feces, stomach emptying and gastrointestinal transit. Further investigations revealed that TTC treatment not only induced the recovery of neurotransmitters, such as motilin, substance P, somatostatin, endothelin and vasoactive intestinal peptide, but also up-regulated the expressions of c-kit and stem cell factor (SCF). Additionally, the number of goblet cells and thickness of the mucus layer were elevated, and the guanylate cyclase C-cGMP signal pathway was also up-regulated after TTC treatment. CONCLUSION: Our findings demonstrated that the laxative effect of TTC in constipation rats is probably due to the regulation of bowel movement and intestinal fluid secretion.

18.
Environ Pollut ; 267: 115443, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892008

RESUMO

It is unknown whether giving birth via caesarean section (c-section) is a modifier for the association between air pollution and asthma. From 2012 to 2013, 59,754 children between the ages of 2 and 17 were randomly selected from 94 middle schools, elementary schools and kindergartens in seven Chinese cities for a cross-sectional study. The children's parents or guardians completed questionnaires, from which data on asthma as well as asthma-related symptoms were obtained. Participants' exposure to particles with an aerodynamic diameter ≤1.0 µm (PM1), ≤2.5 µm (PM2.5), and ≤10 µm (PM10) and exposure to nitrogen dioxide (NO2) were estimated using random forest models. We used mixed effects logistic regression models and added an interaction term between mode of delivery and ambient air pollution into the model to estimate effect modification from c-sections after appropriate adjustments for potential confounding variables. Among children delivered by c-section, the adjusted ORs for asthma and its symptoms per interquartile range (IQR) increase of PM1, PM2.5, PM10 and NO2 (1.20 95% CI: 1.07-1.34 to 2.04 95% CI: 1.87-2.24) were significantly higher than those of children delivered vaginally (1.05 95% CI: 0.92-1.19 to 1.33 95%CI: 1.21-1.47). The interactions between c-sections and ambient air pollution were statistically significant for all studied respiratory disorders, except current wheeze. Delivery via c-section may increase the risks of air pollution on asthma and its symptoms in Chinese children.

19.
Oxid Med Cell Longev ; 2020: 9481841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908641

RESUMO

Clinical application of doxorubicin (Dox) is limited due to its serious side effects including nephrotoxicity, and kidney podocytes play important roles in renal diseases. MicroRNAs (miRNAs) are critical regulators associated with human diseases. The purpose of this study was to explore a novel target in adjusting Dox-induced renal podocyte injury. Through a double luciferase reporter gene experiment, it was found that miR-874-3p directly targeted methionine sulfoxide reductase B3 (MsrB3). During the tests of miR-874-3p inhibitor and MsrB3 siRNA in human podocytes or miR-874-3p antagomir in mice, we found that the expression levels of downstream oxidative stress and apoptosis-related proteins were regulated by miR-874-3p/MsrB3 signal to alleviate or aggravate renal podocyte injury. The data in the present work showed that miR-874-3p aggravated Dox-caused renal podocyte injury by promoting apoptosis and oxidative damage via inhibiting MsrB3. Therefore, miR-874-3p/MsrB3 should be considered as a new therapeutic target in controlling renal podocyte injury induced by Dox.

20.
J Cell Physiol ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930405

RESUMO

The previous research has shown that mitochondrial flash (mitoflash) genesis are functionally and mechanistically integrated with mitochondrial electron transport chain (ETC) energy metabolism. However, the response of mitoflash to superoxide is not entirely consistent with the response of MitoSOX Red. The generation mechanism of mitoflash is still unclear. Here, we investigated mitoflash activities, using the different combinations of ETC substrates and inhibitors, in permeabilized cardiomyocytes or hearts. We found that blocking the complete electron flow, from Complex I to IV, with any one of ETC inhibitors including rotenone (Rot), antimycin A (AntA), myxothiazol (Myxo), stigmatellin, and sodium cyanide, will lead to the abolishment of mitoflashes triggered by substrates in adult permeabilized cardiomyocytes. However, Myxo boosted mitoflashes triggered by the reverse electron of N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. Moreover, Rot and AntA furtherly enhanced mitoflash activity rather than depressed it, suggesting that mitoflashes generated at the Complex III Qo site. Meanwhile, the inhibition of Complex III protein expression resulted in the activity of Complex III decrease, which decreased mitoflash frequency. The function defect (no change of protein level) of the Qo site of Complex III in aging hearts augmented mitoflash generation confirmed the Qo site function was critical to mitoflash genesis. Thus, our results indicate that mitoflash detected by circularly permuted yellow fluorescent protein is generated at the Qo site of Complex III.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA