Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Sci Total Environ ; 806(Pt 2): 150654, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597568

RESUMO

Carbonaceous aerosols are major components in PM2.5 of both polluted and clean atmosphere. Accurate source apportionment of carbonaceous aerosols may support effective PM2.5 control. Dual-carbon isotope method (14C and 13C) was adopted to identify the contribution of three main air pollution sources biogenic and biomass (fbb), liquid fossil (fliq.fossil) and coal (fcoal). The aerosol samples were collected at three types of sites with distinctly different degree of air pollution: urban, rural and regional background. The seasonal variation of source apportionment of the carbonaceous aerosols in urban Beijing was discussed. Modern biogenic and biomass made an absolute dominance of 92.9 ± 0.5% contribution to the carbonaceous aerosols at the background site Mt. Yulong due to long-range transport from Southeast Asia. The three main sources contributed jointly to the atmospheric carbonaceous aerosols at the rural site Wangdu and the urban site Beijing. The biogenic and biomass source was the major contribution in summer (47.0 ± 0.3%) and autumn (49.3 ± 0.3%) of Beijing, while coal source increased from summer (26.8 ± 13.8%) to autumn (34.7 ± 11.5%). Heating significantly increased the coal source to the dominant contribution (47.0 ± 16.9%) in winter of Beijing. Separate day and night time coal contributions were used to evaluate the two origins of coal combustion: industrial use vs. residential use. The results of source apportionment for carbonaceous aerosols provide scientific support for the prevention and control of air pollution.

2.
Nat Commun ; 12(1): 6691, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795265

RESUMO

Since the discovery of Grignard reagents in 1900, the nucleophilic addition of magnesium-based carbon nucleophiles to various electrophiles has become one of the most powerful, versatile, and well-established methods for the formation of carbon-carbon bonds in organic synthesis. Grignard reagents are typically prepared via reactions between organic halides and magnesium metal in a solvent. However, this method usually requires the use of dry organic solvents, long reaction times, strict control of the reaction temperature, and inert-gas-line techniques. Despite the utility of Grignard reagents, these requirements still represent major drawbacks from both an environmental and an economic perspective, and often cause reproducibility problems. Here, we report the general mechanochemical synthesis of magnesium-based carbon nucleophiles (Grignard reagents in paste form) in air using a ball milling technique. These nucleophiles can be used directly for one-pot nucleophilic addition reactions with various electrophiles and nickel-catalyzed cross-coupling reactions under solvent-free conditions.

3.
Front Cardiovasc Med ; 8: 723205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722660

RESUMO

Background: Secreted frizzled-related protein 2 (sFRP2) plays an important role in metabolic syndrome and cardiovascular diseases (CVDs); However, its relevance with cardiometabolic diseases remains to be elucidated. We aimed to determine the serum levels of sFRP2 in patients at different stages of heart failure (HF) with or without type 2 diabetes mellitus (T2DM), and assess the correlation between circulating sFRP2 levels and cardiometabolic risk factors. Methods: In this study, serum samples from 277 patients visiting Zhongshan Hospital affiliated to Fudan University were collected. These patients were clinically diagnosed and categorized as five groups, including the control group, pre-clinical HF group, pre-clinical HF+T2DM group, HF group and HF+T2DM group. Serum sFRP2 levels were measured with enzyme-linked immunosorbent assay (ELISA) tests and the clinical characteristics of each patient were recorded. Spearman rank correlation analysis and multiple stepwise linear regression analysis were conducted. Univariate and multivariate logistic regression analysis were performed to screen risk factors for HF in patients with CVDs. Results: Serum sFRP2 levels were significantly lower in the HF+T2DM group compared with the other four groups. Spearman rank correlation analysis showed that sFRP2 was negatively correlated with parameters including patients' age, fasting plasma glucose (FPG), glycated hemoglobin A1c (HbA1c), cardiac troponin T (cTNT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), left atrial dimension (LAD) and left ventricular posterior wall (LVPW), and positively correlated with hemoglobin, estimated glomerular filtration rate (eGFR), albumin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and left ventricular ejection fraction (LVEF). However, in multiple regression analysis, significant associations with ln(sFRP2) were observed only in FPG, hs-CRP and LAD. Higher serum sFRP2 was significantly linked to lower odds of HF in patients with CVDs. Conclusion: sFRP2 progressively decreased when glucose homeostasis and cardiac function deteriorated. sFRP2 acted as a risk factor for HF in patients with CVDs, especially in those with concomitant T2DM.

4.
Biomedicines ; 9(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829928

RESUMO

Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba-/-) zebrafish model using CRISPR/Cas9 technology. The mafba-/- mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba-/- mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.

5.
Microorganisms ; 9(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835366

RESUMO

BACKGROUND: Salmonellaenterica is one of the common pathogens in both humans and animals that causes salmonellosis and threatens public health all over the world. METHODS AND RESULTS: Here we determined the virulence phenotypes of nine Salmonellaenterica subsp. enterica (S. enterica) isolates in vitro and in vivo, including pathogenicity to chicken, cell infection, biofilm formation and virulence gene expressions. S. Enteritidis 211 (SE211) was highly pathogenic with notable virulence features among the nine isolates. The combination of multiple virulence genes contributed to the conferring of the high virulence in SE211. Importantly, many mobile genetic elements (MGEs) were found in the genome sequence of SE211, including a virulence plasmid, genomic islands, and prophage regions. The MGEs and CRISPR-Cas system might function synergistically for gene transfer and immune defense. In addition, the neighbor joining tree and the minimum spanning tree were constructed in this study. CONCLUSIONS: This study provided both the virulence phenotypes and genomic features, which might contribute to the understanding of bacterial virulence mechanisms in Salmonella enterica subsp. enterica. The first completed genomic sequence for the high virulent S. Enteritidis isolate SE211 and the comparative genomics and phylogenetic analyses provided a preliminary understanding of S. enterica genetics and laid the foundation for further study.

6.
J Anal Test ; : 1-13, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34631199

RESUMO

The outbreak of severe pneumonia at the end of 2019 was proved to be caused by the SARS-CoV-2 virus spreading out the world. And COVID-19 spread rapidly through a terrible transmission way by human-to-human, which led to many suspected cases waiting to be diagnosed and huge daily samples needed to be tested by an effective and rapid detection method. With an increasing number of COVID-19 infections, medical pressure is severe. Therefore, more efficient and accurate diagnosis methods were keen urgently established. In this review, we summarized several methods that can rapidly and sensitively identify COVID-19; some of them are widely used as the diagnostic techniques for SARS-CoV-2 in various countries, some diagnostic technologies refer to SARS (Severe Acute Respiratory Syndrome) or/and MERS (Middle East Respiratory Syndrome) detection, which may provide potential diagnosis ideas.

8.
World Allergy Organ J ; 14(10): 100590, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659625

RESUMO

Accurate house dust mite (HDM) genome and transcriptome data would promote our understanding of HDM allergens. We sought to assemble chromosome-level genome and precise transcriptome profiling of Dermatophagoides farinae and identify novel allergens. In this study, genetic material extracted from HDM bodies and eggs were sequenced. Short-reads from next generation sequencing (NGS) and long-reads from PacBio/Nanopore sequencing were used to construct the D. farinae nuclear genome, transcriptome, and mitochondrial genome. The candidate homologs were screened through aligning our assembled transcriptome data with amino acid sequences in the WHO/IUIS database. Our results showed that compared with the D. farinae draft genome, bacterial DNA content in the presently developed sequencing reads was dramatically reduced (from 22.9888% to 1.5585%), genome size was corrected (from 53.55 Mb to 58.77 Mb), and the contig N50 was increased (from 8.54 kb to 9365.49 kb). The assembled genome has 10 contigs with minimal microbial contamination, 33 canonical allergens and 2 novel allergens. Eight homologs (≥50% homology) were cloned; 2 bound HDM allergic-sera and were identified as allergens (Der f 37 and Der f 39). In conclusion, a chromosome-level genome, transcriptome and mitochondrial genome of D. farinae was generated to support allergen identification and development of diagnostics and immunotherapeutic vaccines.

9.
J Int Med Res ; 49(10): 3000605211050799, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34637357

RESUMO

Malakoplakia, a rare acquired granulomatous disease, affects many systems, including the urogenital tract. The literature describes malakoplakia of different viscera, and satisfactory results have been obtained after treatment. We reported a 48-year-old patient with diabetes who received multiple treatments in our hospital for bladder malakoplakia near the ureteral orifice. Despite aggressive treatment, the patient had recurrent bladder malakoplakia and even developed right ureteral orifice stenosis, which resulted in urinary obstruction and hydronephrosis. We believe that malakoplakia in the bladder near ureteral orifice should receive more attention. Satisfactory results may not be obtained through antibiotic treatment alone, and early antibiotic therapy combined with full surgical excision may be a better choice.


Assuntos
Cistite , Hidronefrose , Malacoplasia , Ureter , Humanos , Malacoplasia/diagnóstico , Pessoa de Meia-Idade
10.
AAPS PharmSciTech ; 22(7): 245, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611770

RESUMO

The aim of this article was to design a self-emulsifying drug delivery system (SEDDS) of loaded cepharanthine (CEP) to improve the oral bioavailability in rats. Based on the solubility determination and pseudo-ternary phase diagram, isopropyl palmitate (IPP) was chosen as the oil phase. Meanwhile, Cremophor RH40 and Macrogol 200 (PEG 200) were chosen as the emulsifier and co-emulsifier, respectively. This prescription was further optimized by using central composite design of response surface methodology. The optimized condition was CEP:IPP:Cremophor RH40:PEG 200=3.6:30.0:55.3:11.1 in mass ratio with maximum drug loading (36.21 mg/mL) and the minimum particle size (36.70 nm). The constructed CEP-SEDDS was characterized by dynamic light scattering, transmission electron microscopy, in vitro release and stability studies. The dissolution level of CEP-SEDDS was nearly 100% after 30 min in phosphate-buffered saline (PBS, pH 6.8) which was higher than that of the pure CEP (approximately 20%). In addition, in vivo pharmacokinetic study in rats showed that CEP-SEDDS dramatically improved bioavailability compared with active pharmaceutical ingredient (API) (the relative bioavailability was 203.46%). In this study, CEP-SEDDS was successfully prepared to enhance the oral bioavailability which might facilitate to increase its better clinical application. Graphical abstract.


Assuntos
Sistemas de Liberação de Medicamentos , Administração Oral , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Emulsões , Ratos , Solubilidade
11.
ACS Appl Mater Interfaces ; 13(43): 51028-51038, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672200

RESUMO

Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2Tx) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti-O-C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti-O-C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g-1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.

12.
FASEB J ; 35(11): e21959, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605572

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) are essential events in venous neointimal hyperplasia (VNH), a culprit of arteriovenous fistula (AVF) malfunction. Mitotic arrest-deficient protein 2B (MAD2B) is a critical regulator of cell proliferation and differentiation in many scenarios. To address the role of MAD2B in VSMCs proliferation and migration during VNH, AVFs from patients with end-stage renal disease (ESRD) and chronic kidney disease (CKD) mice were used to evaluate MAD2B expression. In cultured VSMCs treated with platelet-derived growth factor-BB (PDGF-BB), the effect of MAD2B on VSMCs proliferation and migration was detected by cell counting kit-8 (CCK8) assay, immunofluorescence, wound-healing scratch and transwell assays. Besides, we exploited different small interfering RNAs (siRNAs) to explore the potential mechanisms in the issue. Furthermore, rapamycin was applied to reveal whether MAD2B-associated pathways were involved in its inhibitory effect on VSMCs proliferation and migration. Accordingly, we found that MAD2B expression was enhanced in AVFs from patients with ESRD, CKD mice and VSMCs stimulated by PDGF-BB. Meanwhile, inhibition of MAD2B alleviated VSMCs proliferation and migration while the number of ski-related novel gene (SnoN)-positive VSMCs was also increased in vivo and in vitro. Moreover, gene deletion of MAD2B decreased the level of SnoN protein in PDGF-BB-stimulated VSMCs. Furthermore, rapamycin suppressed the increased expressions of MAD2B and SnoN induced by PDGF-BB. Thus, our study demonstrates that inhibition of MAD2B suppresses the proliferation and migration of VSMCs during VNH via reducing SnoN expression. Moreover, rapamycin exerts an inhibitory effect on intimal hyperplasia, possibly via the MAD2B-SnoN axis.


Assuntos
Hiperplasia , Falência Renal Crônica/metabolismo , Proteínas Mad2/fisiologia , Neointima , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Neointima/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-34493828

RESUMO

Memories of negative experiences exert important control of behavior in the face of actual or anticipated threat. Sometimes, however, this control extends to non-threatening situations, a phenomenon known as overgeneralization of negative memories. Overgeneralization is a reliable cognitive phenotype of major depressive disorder, generalized anxiety disorder, and post-traumatic stress disorder. We therefore sought to develop an animal model to study stress-induced generalization of negative memories (SIG) and determine its dependence on the episodic-like memory circuit. We found that male and female mice, which were trained to differentiate a threatening from neutral context, exhibited robust SIG in response to subsequent social stress. Using chemogenetic circuit manipulations during memory retrieval, we demonstrated that both excitatory afferents to the dorsal hippocampus (DH) from the ventral tegmental area (VTA), and excitatory efferents from the DH to the retrosplenial cortex (RSC) contribute to SIG. Based on the known roles of these projections, we suggest that (1) by targeting subcortical VTA circuits that provide valence signals to the DH, stress prioritizes the retrieval of negative over neutral memories, and (2) by forwarding such information to the RSC, stress engages cortical mechanisms that support the retrieval of general relative to specific memory features. Altogether, these results suggest that various components of the extended hippocampal circuit can serve as treatment targets for memory overgeneralization.

14.
Front Plant Sci ; 12: 736334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567050

RESUMO

Maturity degree and quality evaluation are important for strawberry harvest, trade, and consumption. Deep learning has been an efficient artificial intelligence tool for food and agro-products. Hyperspectral imaging coupled with deep learning was applied to determine the maturity degree and soluble solids content (SSC) of strawberries with four maturity degrees. Hyperspectral image of each strawberry was obtained and preprocessed, and the spectra were extracted from the images. One-dimension residual neural network (1D ResNet) and three-dimension (3D) ResNet were built using 1D spectra and 3D hyperspectral image as inputs for maturity degree evaluation. Good performances were obtained for maturity identification, with the classification accuracy over 84% for both 1D ResNet and 3D ResNet. The corresponding saliency maps showed that the pigments related wavelengths and image regions contributed more to the maturity identification. For SSC determination, 1D ResNet model was also built, with the determination of coefficient (R 2) over 0.55 of the training, validation, and testing sets. The saliency maps of 1D ResNet for the SSC determination were also explored. The overall results showed that deep learning could be used to identify strawberry maturity degree and determine SSC. More efforts were needed to explore the use of 3D deep learning methods for the SSC determination. The close results of 1D ResNet and 3D ResNet for classification indicated that more samples might be used to improve the performances of 3D ResNet. The results in this study would help to develop 1D and 3D deep learning models for fruit quality inspection and other researches using hyperspectral imaging, providing efficient analysis approaches of fruit quality inspection using hyperspectral imaging.

15.
BMC Cancer ; 21(1): 1035, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530752

RESUMO

BACKGROUND: Tumor protein p53 (TP53) is the most frequently mutated gene in head and neck squamous cell carcinoma (HNSC), and TP53 mutations are associated with inhibited immune signatures and poor prognosis. We established a TP53 mutation associated risk score model to evaluate the prognosis and therapeutic responses of patients with HNSC. METHODS: Differentially expressed genes between patients with and without TP53 mutations were determined by using data from the HNSC cohort in The Cancer Genome Atlas database. Patients with HNSC were divided into high- and low-risk groups based on a prognostic risk score that was generated from ten TP53 mutation associated genes via the multivariate Cox regression model. RESULTS: TP53 was the most common mutant gene in HNSC, and TP53 mutations were associated with immunogenic signatures, including the infiltration of immune cells and expression of immune-associated genes. Patients in the high-risk group had significantly poorer overall survival than those in the low-risk group. The high-risk group showed less response to anti-programmed cell death protein 1 (PD-1) therapy but high sensitivity to some chemotherapies. CONCLUSION: The risk score based on our TP53 mutation model was associated with poorer survival and could act as a specific predictor for assessing prognosis and therapeutic response in patients with HNSC.


Assuntos
Genes p53 , Neoplasias de Cabeça e Pescoço/genética , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antineoplásicos/uso terapêutico , Bases de Dados Genéticas , Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Resultado do Tratamento , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética
16.
Cell Death Dis ; 12(10): 854, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535638

RESUMO

Dopaminergic (DA) cell death in Parkinson's disease (PD) is associated with the gradual appearance of neuronal protein aggregates termed Lewy bodies (LBs) that are comprised of vesicular membrane structures and dysmorphic organelles in conjunction with the protein alpha-Synuclein (α-Syn). Although the exact mechanism of neuronal aggregate formation and death remains elusive, recent research suggests α-Syn-mediated alterations in the lysosomal degradation of aggregated proteins and organelles - a process termed autophagy. Here, we used a combination of molecular biology and immunochemistry to investigate the effect of α-Syn on autophagy turnover in cultured human DA neurons and in human post-mortem brain tissue. We found α-Syn overexpression to reduce autophagy turnover by compromising the fusion of autophagosomes with lysosomes, thus leading to a decrease in the formation of autolysosomes. In accord with a compensatory increase in the plasma membrane fusion of autophagosomes, α-Syn enhanced the number of extracellular vesicles (EV) and the abundance of autophagy-associated proteins in these EVs. Mechanistically, α-Syn decreased the abundance of the v-SNARE protein SNAP29, a member of the SNARE complex mediating autophagolysosome fusion. In line, SNAP29 knockdown mimicked the effect of α-Syn on autophagy whereas SNAP29 co-expression reversed the α-Syn-induced changes on autophagy turnover and EV release and ameliorated DA neuronal cell death. In accord with our results from cultured neurons, we found a stage-dependent reduction of SNAP29 in SNc DA neurons from human post-mortem brain tissue of Lewy body pathology (LBP) cases. In summary, our results thus demonstrate a previously unknown effect of α-Syn on intracellular autophagy-associated SNARE proteins and, as a consequence, a reduced autolysosome fusion. As such, our findings will therefore support the investigation of autophagy-associated pathological changes in PD.

17.
Chemistry ; 27(57): 14195-14201, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34374474

RESUMO

A visible-light-driven and room temperature photo-Wolff-Kischner reaction of sulfur ylides and N-tosylhydrazones has been developed for the first time to provide modular access to alkene synthesis. The high functional group tolerance and broad substrate scope were demonstrated by more than 60 examples. Both E- and Z-olefinic stereochemistry in the products could be controlled with excellent stereoselectivity. A series of mechanistic studies support that the reaction should proceed through a radical-carbanion crossover pathway, specifically involving addition of photo-generated sulfur ylide radical cations to N-tosylhydrazones to form carbanions and subsequent Wolff-Kischner process.

18.
Biochem Pharmacol ; 192: 114722, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384759

RESUMO

Mast cells (MCs) initiate and maintain allergic inflammation. Upon being stimulated with immunoglobulin (Ig)E and antigen (Ag), MCs exhibit FcεRI (high-affinity IgE) receptor-mediated degranulation, cytokine secretion, and increased focal adhesion kinase (FAK) activity. The aims of this study were to examine mechanisms of FAK regulation in IgE-mediated MC activation and the effects of FAK inhibition on MC-mediated allergic responses. FAK activity was manipulated with short hairpin RNA (shRNA) knockdown, FAK overexpression, and the FAK inhibitor PF-431396 (PF). Gene expression and kinase activation were analyzed with quantitative molecular biology assays. PF effects were tested in the passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and allergic conjunctivitis (AC) mouse models. Our results showed that FAK overexpression increased IgE-mediated degranulation and reduced the dexamethasone inhibitory effect on MCs activation. The FAK inhibitor PF diminished MC release of ß-hexosaminidase (ß-hex), histamine, and inflammatory cytokines, via a mechanism that involves MAPK and NF-κB signaling pathways. CaMKII was identified as a robust FAK-associating protein. Inhibition of CaMKII activation by KN-93 suppressed FAK activity and its downstream pathway. PF attenuated inflammatory responses in our PCA and ASA models, and relieved signs of allergic disease in AC model mice. In conclusions, MC degranulation and production of inflammatory mediators in allergic disease may be consequent to FcεRI crosslinking inducing CaMKII-mediated activation of FAK activity. FAK inhibition may represent a new MC-suppressing treatment strategy for the treatment of allergic diseases.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Hipersensibilidade/metabolismo , Imunoglobulina E/toxicidade , Mastócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Quinase 1 de Adesão Focal/imunologia , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/uso terapêutico
19.
Clin Exp Rheumatol ; 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34251320

RESUMO

OBJECTIVES: At present, the pathogenesis of Sjögren's syndrome (SS) remains unclear. This research aimed to identify differential metabolites that contribute to SS diagnosis and discover the disturbed metabolic pathways. METHODS: Recent advances in mass spectrometry have allowed the identification of hundreds of unique metabolic signatures and the exploration of altered metabolite profiles in disease. In this study, 505 candidates including healthy controls (HCs) and SS patients were recruited and the serum samples were collected. A non-targeted gas chromatography-mass spectrometry (GC-MS) serum metabolomics method was used to explore the changes in serum metabolites. RESULTS: We found SS patients and HCs can be distinguished by 21 significant metabolites. The levels of alanine, tryptophan, glycolic acid, pelargonic acid, cis-1-2-dihydro-1-2-naphthalenediol, diglycerol, capric acid, turanose, behenic acid, dehydroabietic acid, stearic acid, linoleic acid, heptadecanoic acid, valine, and lactic acid were increased in serum samples from SS patients, whereas levels of catechol, anabasine, 3-6-anhydro-D-galactose, beta-gentiobiose, 2-ketoisocaproic acid and ethanolamine were decreased. The significantly changed pathways included the following: Linoleic acid metabolism; unsaturated fatty acid biosynthesis; aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis; glycerolipid metabolism; selenocompound metabolism; galactose metabolism; alanine, aspartate and glutamate metabolism; glyoxylate and dicarboxylate metabolism; glycerophospholipid metabolism; and valine, leucine and isoleucine degradation. CONCLUSIONS: These findings enhance the informative capacity of biochemical analyses through the identification of serum biomarkers and the analysis of metabolic pathways and contribute to an improved understanding of the pathogenesis of SS.

20.
Clin Exp Rheumatol ; 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34251324

RESUMO

OBJECTIVES: To identify potential lipid biomarkers by studying changes in the blood lipid profile of patients with systemic lupus erythematosus (SLE) using lipidomics. METHODS: Serum samples were collected from 115 SLE patients and 115 age- and sex-matched healthy controls (HCs). Lipid profiles were assessed using ultrahigh-performance liquid chromatography coupled with Q Exactive spectrometry, and possible lipid biomarkers were screened and evaluated by univariate and multivariate analyses. RESULTS: Metabolic phenotypes related to SLE disease activity index (SLEDAI) scores were detected in the serum of SLE patients, and these phenotypes indicated the activity of the disease. Alterations in energy metabolism, fatty acid metabolism and other pathways were observed in patients with SLE. Phosphatidylethanolamine (16:0/18:2), lysophosphatidylethanolamine (18:0), and acylcarnitine (11:0) can be used as biomarkers for the clinical diagnosis of SLE, and receiver operating characteristic (ROC) analysis indicated their effectiveness in diagnosing this disease. CONCLUSIONS: Our study identified serum biomarkers related to disease activity in patients with SLE, providing a basis for its clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...