Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Environ Toxicol ; 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006638

RESUMO

The lung inflammatory damage could result from the nickel oxide nanoparticles (NiO NPs), in which the underlying mechanism is still unclear. This article explored the roles of long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) and p38 mitogen activated protein kinases (p38 MAPK) pathway in pulmonary inflammatory injury induced by NiO NPs. Wistar rats were treated with NiO NPs suspensions (0.015, 0.06, and 0.24 mg/kg) by intratracheal instillation twice-weekly for 9 weeks. Meanwhile, A549 cells were treated with NiO NPs suspensions (25, 50, and 100 µg/ml) for 24 h. It can be concluded that the NiO NPs did trigger pulmonary inflammatory damage, which was confirmed by the histopathological examination, abnormal changes of inflammatory cells and inflammatory cytokines (IL-1ß, IL-6, TGF-ß1, TNF-α, IFN-γ, IL-10, CXCL-1 and CXCL-2) in bronchoalveolar lavage fluid (BALF), pulmonary tissue and cell culture supernatant. Furthermore, NiO NPs activated the p38 MAPK pathway and downregulated MEG3 in vivo and in vitro. However, p38 MAPK pathway inhibitor (10 µM SB203580) reversed the alterations in the expression levels of inflammatory cytokines induced by NiO NPs. Meanwhile, over-expressed MEG3 significantly suppressed NiO NPs-induced p38 MAPK pathway activation and inflammatory cytokines changes. Overall, the above results proved that over-expression of lncRNA MEG3 reduced NiO NPs-induced inflammatory damage by preventing the activation of p38 MAPK pathway.

2.
Gene ; 814: 146162, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34995732

RESUMO

Strawberry is a highly efficient and economical horticultural crop plant, and strawberry fruits are easy to soften after ripening and decay after harvest, which severely impacts the economic benefits. Expansins are plant cell-wall loosening proteins involved in the process of fruit softening, loosening cell walls and reducing fruit firmness. In this study, 35 FvEXPs genes were identified in the F. vesaca genome. These genes were divided into four subfamilies (27 FvEXPAs, 5 FvEXPBs, 1 FvEXLAs, and 2 FvEXLBs) and were unevenly distributed on 7 chromosomes. Gene structure and motif analysis showed the conserved structure and motif in same subgroup, however, the different motifs and structures may reveal functional divergence of multigene family members of FvEXPs in different developmental stages of fruits. The expression profiling by RNA-seq and qRT-PCR analysis revealed that the FvEXP genes have distinct expression patterns among different stages of strawberry development and ripening. Among them, 3 genes (FvEXPA9, FvEXPA12, and FvEXPA27) were highly expressed in the ripening stage, FvEXPA9 and FvEXPA12 were especially highly expressed in turning stage, whereas FvEXPA27 was especially highly expressed in red stage. Our study provides a better understanding of the FvEXP genes, which may benefit strawberry biotechnological breeding and genetic modification for improving fruit quality and delaying fruit softening.

3.
Mater Today Bio ; 13: 100192, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988419

RESUMO

With critical limb ischemia (CLI) being a multi-factorial disease, it is becoming evident that gene therapy with a multiple bio-functional growth factor could achieve better therapeutic outcomes. Cytochrome P450 epoxygenase-2J2 (CYP2J2) and its catalytic products epoxyeicosatrienoic acids (EETs) exhibit pleiotropic biological activities, including pro-angiogenic, anti-inflammatory and cardiovascular protective effects, which are considerably beneficial for reversing ischemia and restoring local blood flow in CLI. Here, we designed a nanoparticle-based pcDNA3.1-CYP2J2 plasmid DNA (pDNA) delivery system (nanoparticle/pDNA complex) composed of a novel three-arm star block copolymer (3S-PLGA-po-PEG), which was achieved by conjugating three-armed PLGA to PEG via the peroxalate ester bond. Considering the multiple bio-functions of CYP2J2-EETs and the sensitivity of the peroxalate ester bond to H2O2, this nanoparticle-based gene delivery system is expected to exhibit excellent pro-angiogenic effects while improving the high oxidative stress and inflammatory micro-environment in ischemic hindlimb. Our study reports the first application of CYP2J2 in the field of therapeutic angiogenesis for CLI treatment and our findings demonstrated good biocompatibility, stability and sustained release properties of the CYP2J2 nano-delivery system. In addition, this nanoparticle-based gene delivery system showed high transfection efficiency and efficient VEGF expression in vitro and in vivo. Intramuscular injection of nanoparticle/pDNA complexes into mice with hindlimb ischemia resulted in significant rapid blood flow recovery and improved muscle repair compared to mice treated with naked pDNA. In summary, 3S-PLGA-po-PEG/CYP2J2-pDNA complexes have tremendous potential and provide a practical strategy for the treatment of limb ischemia. Moreover, 3S-PLGA-po-PEG nanoparticles might be useful as a potential non-viral carrier for other gene delivery applications.

4.
Acta Diabetol ; 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978596

RESUMO

AIMS: White adipose tissue (WAT) dysfunction has been associated with adipose tissue low-grade inflammation and oxidative stress leading to insulin resistance (IR). Adrenomedullin (ADM), an endogenous active peptide considered as an adipokine, is associated with adipocytes function. METHODS: We evaluated the protective effects of ADM against IR in 3T3-L1 adipocytes treated by palmitic acid (PA) and in visceral white adipose tissue (vWAT) of obese rats fed with high-fat diet. RESULTS: We found that endogenous protein expressions of ADM and its receptor in PA-treated adipocytes were markedly increased. PA significantly induced impaired insulin signaling by affecting phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) axis and glucose transporter-4 (GLUT-4) levels, whereas ADM pretreatment enhanced insulin signaling PI3K/Akt and GLUT-4 membrane protein levels, decreased pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß) and IL-6 levels, and improved oxidative stress accompanied with reduced reactive oxygen species (ROS) levels and increased anti-oxidant enzymes manganese superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx1) and catalase (CAT) protein expressions. Furthermore, ADM treatment not only improved IR in obese rats, but also effectively restored insulin signaling, and reduced inflammation and oxidative stress in vWAT of obese rats. CONCLUSIONS: This study demonstrates a prevention potential of ADM against obesity-related metabolic disorders, due to its protective effects against IR, inflammation and oxidative stress in adipocytes.

5.
Bioact Mater ; 11: 254-267, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34977430

RESUMO

Since projection-based 3D bioprinting (PBP) could provide high resolution, it is well suited for printing delicate structures for tissue regeneration. However, the low crosslinking density and low photo-crosslinking rate of photocurable bioink make it difficult to print fine structures. Currently, an in-depth understanding of the is lacking. Here, a research framework is established for the analysis of printability during PBP. The gelatin methacryloyl (GelMA)-based bioink is used as an example, and the printability is systematically investigated. We analyze the photo-crosslinking reactions during the PBP process and summarize the specific requirements of bioinks for PBP. Two standard quantized models are established to evaluate 2D and 3D printing errors. Finally, the better strategies for bioprinting five typical structures, including solid organs, vascular structures, nerve conduits, thin-wall scaffolds, and micro needles, are presented.

6.
Rob Auton Syst ; 148: 103917, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34720413

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak has increased mortality and morbidity world-wide. Oropharyngeal swabbing is a well-known and commonly used sampling technique for COVID-19 diagnose around the world. We developed a robot to assist with COVID-19 oropharyngeal swabbing to prevent frontline clinical staff from being infected. The robot integrates a UR5 manipulator, rigid-flexible coupling (RFC) manipulator, force-sensing and control subsystem, visual subsystem and haptic device. The robot has strength in intrinsically safe and high repeat positioning accuracy. In addition, we also achieve one-dimensional constant force control in the automatic scheme (AS). Compared with the rigid sampling robot, the developed robot can perform the oropharyngeal swabbing procedure more safely and gently, reducing risk. Alternatively, a novel robot control schemes called collaborative manipulation scheme (CMS) which combines a automatic phase and teleoperation phase is proposed. At last, comparative experiments of three schemes were conducted, including CMS, AS, and teleoperation scheme (TS). The experimental results shows that CMS obtained the highest score according to the evaluation equation. CMS has the excellent performance in quality, experience and adaption. Therefore, the proposal of CMS is meaningful which is more suitable for robot-sampling.

7.
Neural Regen Res ; 17(5): 1138-1145, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34558543

RESUMO

Abnormal accumulation of α-synuclein contributes to the formation of Lewy bodies in the substantia nigra, which is considered the typical pathological hallmark of Parkinson's disease. Recent research indicates that angiotensin-(1-7) plays a crucial role in several neurodegenerative disorders, including Parkinson's disease, but the underlying mechanisms remain elusive. In this study, we used intraperitoneal administration of rotenone to male Sprague-Dawley rats for 4 weeks to establish a Parkinson's disease model. We investigated whether angiotensin-(1-7) is neuroprotective in this model by continuous administration of angiotensin-(1-7) into the right substantia nigra for 4 weeks. We found that angiotensin-(1-7) infusion relieved characteristic parkinsonian behaviors and reduced α-synuclein aggregation in the substantia nigra. Primary dopaminergic neurons were extracted from newborn Sprague-Dawley rat substantia nigras and treated with rotenone, angiotensin-(1-7), and/or the Mas receptor blocker A-779 for 24 hours. After binding to the Mas receptor, angiotensin-(1-7) attenuated apoptosis and α-synuclein aggregation in rotenone-treated cells. Primary dopaminergic neurons were also treated with angiotensin-(1-7) and/or the autophagy inhibitor 3-methyladenine for 24 hours. Angiotensin-(1-7) increased α-synuclein removal and increased the autophagy of rotenone-treated cells. We conclude that angiotensin-(1-7) reduces α-synuclein aggregation by alleviating autophagy dysfunction in Parkinson's disease. Therefore, the angiotensin-(1-7)/Mas receptor axis plays an important role in the pathogenesis of Parkinson's disease and angiotensin-(1-7) has potential therapeutic value for Parkinson's disease. All experiments were approved by the Biological Research Ethics Committee of Nanjing First Hospital (approval No. DWSY-2000932) in January 2020.

8.
Environ Toxicol ; 37(1): 79-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34608745

RESUMO

Long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) was down-regulated in pulmonary fibrosis of rats induced by Nickel oxide nanoparticles (NiO NPs), while the downstream regulatory mechanisms of MEG3 remain unclear. This study aimed to investigate the relationship among MEG3, Hedgehog (Hh) signaling pathway and autophagy in pulmonary fibrosis caused by NiO NPs. The pulmonary fibrosis model in rats was constructed by intratracheal instillation of 0.015, 0.06, and 0.24 mg/kg NiO NPs twice a week for 9 weeks. Collagen deposition model was established by treating A549 cells with 25, 50, and 100 µg/mL NiO NPs for 24 h. Our results indicated that NiO NPs activated Hh pathway, down-regulated the expression of MEG3, and reduced autophagy activity in vivo and in vitro. Meanwhile, the autophagy process was promoted by Hh pathway inhibitor (CDG-0449), while the collagen formation in A549 cells was reduced by autophagy activator (Rapamycin). Furthermore, the overexpressed MEG3 inhibited the activation of Hh pathway, resulting in autophagy activity enhancement along with collagen formation reduction. In summary, lncRNA MEG3 can restrain pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy, which may serve as a potential therapeutic strategy for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , RNA Longo não Codificante , Animais , Autofagia , Proteínas Hedgehog/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , RNA Longo não Codificante/genética , Ratos , Transdução de Sinais
9.
Bioorg Chem ; 118: 105478, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800885

RESUMO

Linderane (LDR) is a main furan-containing sesquiterpenoid of the common herbal medicine Lindera aggregata (Sims) Kosterm. Our early study indicated that LDR led to mechanism-based inactivation (MBI) of CYP2C9 in vitro, implying possible drug-drug interactions (DDIs) in clinic. In the present study, influence of LDR on the pharmacokinetics of the corresponding hydroxylated metabolites of CYP2C9 substrates in rats was investigated. Pharmacokinetic studies revealed that pretreatment with LDR at 20 mg/kg for 15 days inhibited the metabolism of both tolbutamide and warfarin catalyzed by CYP2C9. As for 4-hydroxytolbutamide, the Cmax was decreased, the t1/2z was prolonged, and the Vz/F was increased, all with significant difference. As for 7-hydroxywarfarin, the AUC0-t/AUC0-∞ and CLz/F were significantly decreased and increased, respectively. Furthermore, the underlying molecular mechanisms based on MBI of CYP2C9 by LDR were revealed. Two reactive metabolites of LDR, furanoepoxide and γ-ketoenal intermediates were identified in CYP2C9 recombinant enzyme incubation systems. Correspondingly, covalent modifications of lysine and cysteine residues of CYP2C9 protein were discovered in the CYP2C9 incubation system treated with LDR. The formation of protein adducts exhibited obvious time- and dose-dependence, which is consistent with the trend of enzyme inhibition caused by LDR in vitro. In addition to the apoprotein of CYP2C9, the heme content was significantly reduced after co-incubation with LDR. These data revealed that modification of both apoprotein and heme of CYP2C9 by reactive metabolites of LDR led to MBI of CYP2C9, therefore resulting in the inhibition of biotransformation of CYP2C9 substrates to their corresponding metabolites in vivo.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Sesquiterpenos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/química , Furanos/química , Humanos , Lindera/química , Estrutura Molecular , Sesquiterpenos/química , Relação Estrutura-Atividade
10.
Artigo em Inglês | MEDLINE | ID: mdl-34852403

RESUMO

AIMS: This study aimed to prepare swim bladder hydrolysate (SBH) with Mn  < 4000 Da, and investigate its effects on cyclophosphamide (CTX)-mediated ovarian injury in mice. METHODS: Hydrolysates were prepared by heating extraction, enzymatic hydrolysis and ultrafiltration. Mn and distribution of SBH were analyzed via gel filtration chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Changes in the mouse oestrus cycle were determined by cytological examination. The number of follicles was examined using histopathology. Enzyme-linked immunosorbent assays (ELISAs) were used to determine the serum sex hormone levels. RESULTS: The Mn of SBH, prepared by heating extraction, enzymatic hydrolysis, ultrafiltration, and from different batches, was below 4000 Da, and the preparation process was stable. Compared with the control group, the low-, middle-, and high-dose SBH treatment groups showed different trends in oestrus duration, serum sex hormone levels, and the number of primordial and secondary follicles. The oestrus cycle duration of the high-dose SBH group was longer than that of the model group. The serum luteinizing hormone, follicle-stimulating hormone, and anti-Müllerian hormone levels in the middle-dose group were the closest to those of control group. The number of primordial and secondary follicles in the medium-dose group was significantly higher than that in the model group and closest to those of control group. CONCLUSION: After heating extraction, trypsin/Flavourzyme hydrolysis and ultrafiltration, a hydrolysate with Mn below 4000 Da could be prepared. We found that a moderate (400 mg/kg) SBH dose resulted in the greatest effect on ovarian injury remission in mice.

11.
Chin J Integr Med ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874519

RESUMO

OBJECTIVE: To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model. METHODS: Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS: Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05). CONCLUSION: LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.

12.
Plants (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834592

RESUMO

Intragenesis is an all-native engineering technology for crop improvement. Using an intragenic strategy to bring genes from wild species to cultivated strawberry could expand the genetic variability. A robust regeneration protocol was developed for the strawberry cv. 'Shanghai Angel' by optimizing the dose of Thidiazuron and identifying the most suitable explants. The expression cassette was assembled with all DNA fragments from F. vesca, harboring a sugar transporter gene FvSTP8 driven by a fruit-specific FvKnox promoter. Transformed strawberry was developed through an Agrobacterium-mediated strategy without any selectable markers. Other than PCR selection, probe-based duplex droplet digital PCR (ddPCR) was performed to determine the T-DNA insert. Four independent transformed shoots were obtained with a maximum of 5.3% efficiency. Two lines were confirmed to be chimeras, while the other two were complete transformants with six and 11 copies of the intragene, respectively. The presence of a vector backbone beyond the T-DNA in these transformants indicated that intragenic strawberries were not obtained. The current work optimized the procedures for producing transformed strawberry without antibiotic selection, and accurately determined the insertion copies by ddPCR in the strawberry genome for the first time. These strategies might be promising for the engineering of 'Shanghai Angel' and other cultivars to improve agronomic traits.

13.
Front Public Health ; 9: 769672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760866

RESUMO

This article uses data from the government work reports of 31 provinces (autonomous regions and municipalities) in China and 21 cities in Guangdong Province of China to perform a fixed effect regression. It was found that economic growth target constraints and economic growth target gaps between countries and provinces, or between provinces and cities have a significant impact on the quality of public occupational health. The non-linear relationship between economic growth target setting and the quality of public occupational health was then discussed in detail, and the reliability of basic conclusions drawn was ensured by robustness and endogeneity tests. The results show that the effect of economic growth target constraints and gaps on the quality of public occupational health shows a "U-shaped" trend at both the provincial and city levels, which initially promotes and, eventually, inhibits. This relationship is closely related to the current economic system reforms, administrative reforms, and social transformation in China. Therefore, in emphasising high-quality economic development, the government should fully consider the actual state of the development of jurisdictions in setting economic goals to improve the quality of public occupational health in an orderly manner.


Assuntos
Desenvolvimento Econômico , Saúde do Trabalhador , China , Governo Local , Reprodutibilidade dos Testes
14.
Front Oncol ; 11: 718871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778033

RESUMO

Background: BRCA2 mutation has a more substantial impact on the homologous recombination and superior therapeutic response to platinum-based chemotherapy than BRCA1 mutation. Whether BRCA2-mutated patients could benefit more from PARPi than BRCA1-mutated patients remains unclear. We performed a meta-analysis to assess the efficacy difference of PARPi between BRCA1 mutation carriers and BRCA2 mutation carriers. Methods: Pubmed, Embase, and Cochrane Library were comprehensively searched for randomized controlled trials (RCTs) of PARPi that had available hazard ratios (HRs) of progression-free survival (PFS) in both BRCA1-mutated population and BRCA2-mutated population. We calculated the pooled PFS HRs and 95%CI using randomized-effect models, and the difference between the two estimates was compared by interaction test. Results: A total of 11 eligible RCTs of high quality were identified through search. Overall, 1544 BRCA1 mutation carriers and 1191 BRCA2 mutation carriers were included in the final analysis. The pooled PFS HR was 0.42 (95% CI: 0.35-0.50) in BRCA1-mutated patients who were treated with PARPi compared with patients in the control group. In BRCA2-mutated patients treated with PARPi, the pooled PFS HR compared with the control groups was 0.35 (95% CI: 0.24-0.51). The difference in efficacy of PARPi was not significant between the two subgroups (P heterogeneity = 0.40, for interaction). Conclusion: BRCA1-mutated patients and BRCA2-mutated patients could benefit from PARPi, and the efficacy is comparable. Currently, there is no evidence that BRCA2-mutated patients would benefit more from PARPi than BRCA1-mutated patients. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020214582.

16.
Mol Neurobiol ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34618330

RESUMO

We recently reported that intraperitoneal injection of 7,8-dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor-mimicking small compound, could attenuate alcohol-related behaviors in a two-bottle choice ethanol consumption procedure (IA2BC) in rats via tropomyosin receptor kinase B in the ventral tegmental area (VTA), which is closely related to alcohol use disorder. However, the detailed mechanisms underlying the regulation of 7,8-DHF on alcohol drinking behavior remain elusive. In this study, we determined the role of nitric oxide (NO), a pleiotropic signaling molecule, in the VTA in the action of 7,8-DHF upon alcohol drinking behavior. Intermittent alcohol exposure led to the overexpression of NO in the VTA, especially 72 h after withdrawal from four weeks of ethanol exposure in IA2BC rats. A higher amount of alcohol intake was also found at the same time point, consistent with the overexpression of NO in the VTA. Microinjection of NG-Nitro-l-Arginine Methyl Ester, (NO synthase inhibitor) or 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NO scavenger) into the VTA inhibited alcohol intake, whereas application of S-Nitroso-N-acetyl-DL-penicillamine (SNAP, the NO donor) in the VTA further enhanced alcohol consumption in IA2BC rats. Interestingly, either 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (a sGC inhibitor) or KT5823 [a selective protein kinase G (PKG) inhibitor] blocked NO's enhancing effect on ethanol intake. Intraperitoneal injection of 7,8-DHF reduced the overexpression of NO; SNAP microinjected into the VTA reversed the inhibitory effects of 7,8-DHF on alcohol consumption. Our findings suggest that NO-cGMP-PKG might be involved in regulation of 7,8-DHF on alcohol consumption in IA2BC rats.

17.
Medicine (Baltimore) ; 100(40): e27320, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622830

RESUMO

BACKGROUND: Gestational Trophoblastic Neoplasia (GTN) is a spectrum of pregnancy-associated tumours emerging from placental tissue. Generally, GTN patients are considered to have a high rate of recovery. However, almost 25 per cent of GTN tumours resist, or have a high probability of relapsing following the first line of chemo treatment. Thus, tumours that resist or relapse requires salvage chemotherapy, sometimes accompanied by surgery. Globally, clinicians utilize a range of salvage regimens. Currently, ongoing debates are centred around choosing the best regimens in terms of safety and efficacy. Therefore, the current research aims to appraise the success and level of safeness using chemotherapy to treat patients with resistant or recurrent GTN. METHODS: The authors will conduct a methodological exploration in online-based databases to find Randomized Controlled Trials related to the adoption of chemotherapy agents as treatment for resistant or recurrent GTN patients. The databases are as follows: EMBASE, PubMed, Cochrane Database Central, UpToDate, Chinese National Knowledge Infrastructure, Web of Science, and WanFang Database. The search will be limited to articles published in either English or Chinese. Moreover, the authors will also perform a search for ongoing trials on online-based clinical trial registries. Two independent authors will screen and select articles for review. A similar process will be followed by two independent authors to complete the extraction of data and evaluate the bias risk. In relevant cases, the authors will contract trial investigators to obtain related, unpublished data. The authors will use the random-effects model for pooling data in RevMan software (v5.3). RESULTS: The present systematic review aims to evaluate the efficacy and level of safeness associated with using chemotherapy for resistant or recurrent GTN patients. CONCLUSION: The results of the proposed systematic analysis could summarize the most recent evidence for the use of chemotherapy agents on GTN patients. ETHICS AND DISSEMINATION: Since the proposed study uses pre-published data, an ethical approval is not required. REVIEW REGISTRATION NUMBER: Aug 25, 2021.osf.io/rgzbn. (https://osf.io/rgzbn/).


Assuntos
Antineoplásicos/uso terapêutico , Doença Trofoblástica Gestacional/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Metanálise como Assunto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Gravidez , Terapia de Salvação/métodos , Revisões Sistemáticas como Assunto , Resultado do Tratamento
18.
Front Cardiovasc Med ; 8: 701745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660710

RESUMO

Objective: To explore the role of glycolysis in cardiac fibroblast (CF) activation and cardiac fibrosis after myocardial infarction (MI). Method: In vivo: 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was injected into the abdominal cavity of the MI or sham mice every day. On the 28th day, cardiac function was measured by ultrasonic cardiography, and the hearts were harvested. Masson staining and immunofluorescence (IF) were used to evaluate the fibrosis area, and western blot was used to identify the glycolytic level. In vitro, we isolated the CF from the sham, MI and MI with 2-DG treatment mice, and we also activated normal CF with transforming growth factor-ß1 (TGF-ß1) and block glycolysis with 2-DG. We then detected the glycolytic proteins, fibrotic proteins, and the concentrations of lactate and glucose in the culture medium. At last, we further detected the fibrotic and glycolytic markers in human fibrotic and non-fibrotic heart tissues with masson staining, IF and western blot. Result: More collagen and glycolytic protein expressions were observed in the MI mice hearts. The mortality increased when mice were treated with 2-DG (100 mg/kg/d) after the MI surgery (Log-rank test, P < 0.05). When the dosage of 2-DG declined to 50 mg/kg/d, and the treatment was started on the 4th day after MI, no statistical difference of mortality between the two groups was observed (Log-rank test, P = 0.98). The collagen volume fraction was smaller and the fluorescence signal of α-smooth muscle actin (α-SMA) was weaker in mice treated with 2-DG than PBS. In vitro, 2-DG could significantly inhibit the increased expression of both the glycolytic and fibrotic proteins in the activated CF. Conclusion: Cardiac fibrosis is along with the enhancement of CF activation and glycolysis. Glycolysis inhibition can alleviate cardiac fibroblast activation and cardiac fibrosis after myocardial infarction.

19.
BMC Cardiovasc Disord ; 21(1): 495, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645391

RESUMO

BACKGROUND: Arterial medial calcification (AMC) is associated with a high incidence of cardiovascular risk in patients with type 2 diabetes and chronic kidney disease. Here, we tested whether hydrogen sulfide (H2S) can prevent AMC in rats with diabetic nephropathy (DN). METHODS: DN was induced by a single injection of streptozotocin and high-fat diet (45% kcal as fat) containing 0.75% adenine in Sprague-Dawley rats for 8 weeks. RESULTS: Rats with DN displayed obvious calcification in aorta, and this was significantly alleviated by Sodium Hydrosulfide (NaHS, a H2S donor, 50 µmol/kg/day for 8 weeks) treatment through decreasing calcium and phosphorus content, ALP activity and calcium deposition in aorta. Interestingly, the main endogenous H2S generating enzyme activity and protein expression of cystathionine-γ-lyase (CSE) were largely reduced in the arterial wall of DN rats. Exogenous NaHS treatment restored CSE activity and its expression, inhibited aortic osteogenic transformation by upregulating phenotypic markers of smooth muscle cells SMα-actin and SM22α, and downregulating core binding factor α-1 (Cbfα-1, a key factor for bone formation), protein expressions in rats with DN when compared to the control group. NaHS administration also significantly reduced Stat3 activation, cathepsin S (CAS) activity and TGF-ß1 protein level, and improved aortic elastin expression. CONCLUSIONS: H2S may have a clinical significance for treating AMC in people with DN by reducing Stat3 activation, CAS activity, TGF-ß1 level and increasing local elastin level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...