Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Total Environ ; 771: 144810, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33545479


Urban development has significantly modified the surface thermal environment in urban areas. This study provides the first attempt to characterize the urban development imprint on surface thermal environment for 323 cities across the entire country of China, using an intra-urban perspective. Specifically, it investigates the variation of surface thermal environment in terms of land surface temperature (LST) difference triggered by significant urban evolution of intra-urban division containing two primary classes: old urban areas developed by 1992 and new ones expanded in the 1992-2015 period. Under this "old-new" dichotomy, the relationship between urban development and the LST difference is explored through Multi-scale Geographically Weighted Regression (MGWR). Results reveal that urban development is closely related to the difference in LST between old and new urban areas in 2015, which varies from -2.66 °C to 2.46 °C, up to -6.27 °C in western China. 264 cities manifest relatively "cooler" urban environments in the generally larger-sized new urban areas. The seven selected urban development indicators can explain 75% of the variance in the LST difference through MGWR. Among them, the old-new elevation difference, the normalized difference vegetation index (NDVI) difference, and Gini coefficient are found to influence the LST difference in various spatially varying manners. The elevation difference, a generally underestimated nature-driven indicator, is found dominant in explaining the LST difference for 252 cities, among which 216 cities demonstrate higher LSTs in the urban areas with lower elevations. Overall, this study provides valuable information of human-environment interaction across many cities in a generalized way, which complements similar studies at local level, and helps to depict a complete picture of environmental impacts of urban development. The integrated workflow can also be promoted to other periods or other countries to examine the corresponding urbanization imprint on intra-urban surface warming.

Artigo em Inglês | MEDLINE | ID: mdl-33371367


Local warming induced by rapid urbanization has been threatening residents' health, raising significant concerns among urban planners. Local climate zone (LCZ), a widely accepted approach to reclassify the urban area, which is helpful to propose planning strategies for mitigating local warming, has been well documented in recent years. Based on the LCZ framework, many scholars have carried out diversified extensions in urban zoning research in recent years, in which urban functional zone (UFZ) is a typical perspective because it directly takes into account the impacts of human activities. UFZs, widely used in urban planning and management, were chosen as the basic unit of this study to explore the spatial heterogeneity in the relationship between landscape composition, urban morphology, urban functions, and land surface temperature (LST). Global regression including ordinary least square regression (OLS) and random forest regression (RF) were used to model the landscape-LST correlations to screen indicators to participate in following spatial regression. The spatial regression including semi-parametric geographically weighted regression (SGWR) and multiscale geographically weighted regression (MGWR) were applied to investigate the spatial heterogeneity in landscape-LST among different types of UFZ and within each UFZ. Urban two-dimensional (2D) morphology indicators including building density (BD); three-dimensional (3D) morphology indicators including building height (BH), building volume density (BVD), and sky view factor (SVF); and other indicators including albedo and normalized difference vegetation index (NDVI) and impervious surface fraction (ISF) were used as potential landscape drivers for LST. The results show significant spatial heterogeneity in the Landscape-LST relationship across UFZs, but the spatial heterogeneity is not obvious within specific UFZs. The significant impact of urban morphology on LST was observed in six types of UFZs representing urban built up areas including Residential (R), Urban village (UV), Administration and Public Services (APS), Commercial and Business Facilities (CBF), Industrial and Manufacturing (IM), and Logistics and Warehouse (LW). Specifically, a significant correlation between urban 3D morphology indicators and LST in CBF was discovered. Based on the results, we propose different planning strategies to settle the local warming problems for each UFZ. In general, this research reveals UFZs to be an appropriate operational scale for analyzing LST on an urban scale.

Planejamento de Cidades , Monitoramento Ambiental , Temperatura Alta , Cidades , Humanos , Temperatura , Urbanização
J Colloid Interface Sci ; 587: 429-436, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33383432


HYPOTHESIS: Jumping of coalesced droplets on superhydrophobic surfaces (SHSs) is widely used for enhanced condensation, anti-icing/frosting, and self-cleaning due to its superior droplet transport capability. However, because only a tiny fraction (about 5%) of the released excess surface energy during coalescence can be transformed into jumping kinetic energy, the jumping is very weak, limiting its application. METHODS: We experimentally propose enhanced jumping methods, use machine learning to design structures that achieve ultimate jumping, and finally combine experiments and simulations to investigate the mechanism of the enhanced jumping. FINDING: We find that a more orderly flow inside the droplets through the structure is the key to improve energy transfer efficiency and that the egg tray-like structure enables the droplet to jump with an energy transfer efficiency 10.6 times higher than that of jumping on flat surfaces. This energy transfer efficiency is very close to the theoretical limit, i.e., almost all the released excess surface energy is transformed into jumping kinetic energy after overcoming viscous dissipation. The ultimate jumping enhances the application of water droplet jumping and enables other low surface energy fluid such as R22, R134a, Gasoline, and Ethanol, which cannot jump on a flat surface, to jump.

Artigo em Inglês | MEDLINE | ID: mdl-31614779


Conspicuous expansion and intensification of impervious surfaces accompanied by rapid urbanization are widely recognized to have exerted evident impacts on the urban thermal environment. Investigating the spatially and temporally varying relationships between Land Surface Temperature (LST) and impervious surfaces (IS) at multiple scales is of great significance for steering IS expansion and intensification. This study proposes an analytical framework to investigate the spatiotemporal variations of LST and its responses to IS in Wuhan, China at both city scale and sub-region scale. The summer LST patterns in 2002-2017 are extracted by Multi-Task Gaussian Process (MTGP) model from raw 8-day synthesized MODerate-resolution Imaging Spectroradiometer (MODIS) LST data. At the city scale, the weighted center of LST (LSTWC) and impervious surface fraction (ISFWC), multi-temporal trajectories and coupling indicators are utilized to comprehensively examine the spatial and temporal dynamics of LST and IS within Wuhan. At the sub-region scale, urban heat island ratio index (URI), impervious surfaces contribution index (ISCI) and sprawl rate are introduced for further quantifying the relationships of LST and IS. The results reveal that IS and hot thermal landscapes expanded by 407.43 km2 and 255.82 km2 in Wuhan in 2002-2017 at city scale. The trajectories of LSTWCs and ISFWCs are visually coherent and both heading to southeast direction in general. At the sub-region scale, the specific cardinal directions with the highest ISCI variations are examined to be the exact directions of ISFWC trajectories in 2002-2017. The results reveal that the spatiotemporal variations of LST and IS are highly correlated at both city and sub-region scales within Wuhan, thus testifying the significance of steering IS expansion and renewal for controlling urban thermal environment deterioration.

Monitoramento Ambiental/métodos , Temperatura Alta , Urbanização , China , Cidades , Imagens de Satélites
Langmuir ; 35(48): 16037-16042, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31373817


The essential characteristic of the self-propelled jumping droplet is the jumping velocity, which determines its application value in heat transfer enhancement, antifrosting, self-cleaning, and so on. The jumping velocity is directly related to the energy conversion efficiency (i.e., the ratio of jumping kinetic energy surface energy released by coalescence to surface energy released by coalescence) and it is affected by the initial state of droplets but there is no unified theory to describe the relationship between the initial state of droplets and the energy conversion efficiency. In this paper, the projection of the initial chemical potential and the final chemical potential difference of droplets in the direction of jumping is defined as jumping potential by theoretical analysis of the chemical potential evolution. The effects of droplet number, distribution, and radius ratio on energy conversion efficiency can be synthetically characterized by jumping potential. The larger the jumping potential is, the higher the energy conversion efficiency is. Finally, the rationality and universality of the jumping potential are verified by numerical simulations and comparison with previous studies. The jumping potential can explain phenomena that cannot be explained in previous studies and can provide a synthesis critical value of droplet jumping.