Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Virus Res ; : 198593, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34637814


Zika virus (ZIKV) is a typical mosquito-borne flavivirus known to cause severe fetal microcephaly and adult Guillain-Barré syndrome. Currently, there are no specific drugs or licensed vaccines available for ZIKV infection, and further research is required to identify host cell proteins involved in the virus's life cycle. Viruses are known to use host cell membrane skeletal proteins, such as actin and spectrin, to complete cell entry, transportation, and release. Here, based on immunoprecipitation, the Axl and ZIKV envelope (E) protein were shown to interact with the cell membrane skeleton protein 4.1R. Furthermore, deletion of 4.1R significantly reduced virus titer and viral protein synthesis. Our study showed that 4.1R is an important host cell protein during ZIKV infection and may be involved in the process of viral entry into host cells.

Zool Res ; 42(5): 633-636, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34423606


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the global coronavirus disease 2019 (COVID-19) pandemic. Numerous studies have demonstrated that cardiovascular disease may affect COVID-19 progression. In the present study, we investigated the effect of hypertension on viral replication and COVID-19 progression using a hypertensive mouse model infected with SARS-CoV-2. Results revealed that SARS-CoV-2 replication was delayed in hypertensive mouse lungs. In contrast, SARS-CoV-2 replication in hypertensive mice treated with the antihypertensive drug captopril demonstrated similar virus replication as SARS-CoV-2-infected normotensive mice. Furthermore, antihypertensive treatment alleviated lung inflammation induced by SARS-CoV-2 replication (interleukin (IL)-1ß up-regulation and increased immune cell infiltration). No differences in lung inflammation were observed between the SARS-CoV-2-infected normotensive mice and hypertensive mice. Our findings suggest that captopril treatment may alleviate COVID-19 progression but not affect viral replication.

Anti-Hipertensivos/uso terapêutico , COVID-19/complicações , Captopril/uso terapêutico , Hipertensão/complicações , Pneumopatias/tratamento farmacológico , SARS-CoV-2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumopatias/etiologia , Pneumopatias/virologia , Camundongos , Replicação Viral/efeitos dos fármacos
Bioorg Med Chem Lett ; 36: 127785, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444740


An array of novel 7-methoxyl-2,3-disubstituted quinoxaline derivatives was designed, synthesized and their potential antihypertensive activities were examined, in an attempt to discover potent small molecules with vasorelaxant effects. The vasoactivities of these compounds on vascular tone, as well as underlying mechanisms were hereby explored. Results showed that five compounds (7s, 7t, 7v, 7w, 7γ) could induce endothelium-independent relaxation in high extracellular K+- and phenylephrine-precontracted C57 mice aortic rings. These five compounds, unlike other commonly used vasodilators, could slowly but effectively inhibit vasoconstriction.

Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Quinoxalinas/farmacologia , Vasodilatadores/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Aorta Torácica/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fenilefrina , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Vasodilatadores/síntese química , Vasodilatadores/química
Clin Exp Pharmacol Physiol ; 47(10): 1731-1739, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424975


Vascular dementia (VaD), caused by stroke or small vessel disease, is the second-most common type of dementia after Alzheimer's disease (AD). Donepezil is an acetylcholinesterase inhibitor that is currently used in patients with mild to moderate AD, and has recently been shown to improve cognitive performance in patients with VaD. In this study, we evaluated the effects of donepezil on VaD, and investigated the underlying molecular mechanisms of action. VaD was established by ligation of the bilateral common carotid artery occlusion (BCCAO). Executive function was tested by the Morris water maze (MWM) test and the attentional set shifting task (ASST). Our results showed that donepezil improved executive dysfunction and cognitive flexibility in BCCAO rats. In addition, we showed that donepezil treatment decreased the level of Aß1-42 in BCCAO rats by enzyme-linked immunosorbent assay. Post-translational modifications (PTMs) are known to be critical mechanisms in the regulation of various cellular processes. Furthermore, PTMs have been linked to the central nervous system, which highlights the importance of PTMs in neurodegenerative diseases. In this study, we used western blot analysis to identify several novel PTMs in the hippocampus of BCCAO rats that were treated with or without donepezil. The data revealed that lysine propionylation, 2-hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation were elevated in the hippocampus of BCCAO rats when compared to sham rats. This increase was abolished by donepezil treatment. Taken together, we speculate that donepezil treatment improves cognitive function in our animal model of VaD, possibly by reducing aberrant acyl-PTMs.