Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455341

RESUMO

To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S-adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting ΔhpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the ΔhpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and ΔhpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the ΔhpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the ΔhpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions.IMPORTANCE As the first group of organisms to develop oxygenic photosynthesis, Cyanobacteria are central to the evolutionary history of life on Earth and the subsequent oxygenation of the atmosphere. To investigate the origin of cyanobacteria and the emergence of oxygenic photosynthesis, geobiologists use biomarkers, the remnants of lipids produced by different organisms that are found in geologic sediments. 2-Methylhopanes have been considered indicative of cyanobacteria in some environmental settings, with the parent lipids 2-methylhopanoids being present in many contemporary cyanobacteria. We have created a Nostoc punctiforme ΔhpnP mutant strain that does not produce 2-methylhopanoids to assess the influence of 2-methylhopanoids on stress tolerance. Increased metabolic activity in the mutant under stress indicates compensatory alterations in metabolism in the absence of 2-methylhopanoids.


Assuntos
Nostoc/metabolismo , Triterpenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Isomerismo , Metilação , Nostoc/química , Nostoc/genética , Nostoc/crescimento & desenvolvimento , Osmose , Triterpenos/química
2.
Environ Microbiol ; 15(5): 1464-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22712472

RESUMO

Families of closely related chemical compounds, which are relatively resistant to degradation, are often used as biomarkers to help trace the evolutionary history of early groups of organisms and the environments in which they lived. Biomarkers derived from hopanoid variations are particularly useful in determining bacterial community compositions. 2-Methylhopananoids have been thought to be diagnostic for cyanobacteria, and 2-methylhopanes in the geological record are taken as evidence for the presence of cyanobacteria-containing communities at the time of sediment deposition. Recently, however, doubt has been cast on the validity of 2-methylhopanes as cyanobacterial biomarkers, since non-cyanobacterial species have been shown to produce significant amounts of 2-methylhopanoids. This study examines the diversity of hpnP, the hopanoid biosynthesis gene coding for the enzyme that methylates hopanoids at the C2 position. Genomic DNA isolated from stromatolite-associated pustular and smooth microbial mat samples from Shark Bay, Western Australia, was analysed for bacterial diversity, and used to construct an hpnP clone library. A total of 117 partial hpnP clones were sequenced, representing 12 operational taxonomic units (OTUs). Phylogenetic analysis showed that 11 of these OTUs, representing 115 sequences, cluster within the cyanobacterial clade. We conclude that the dominant types of microorganisms with the detected capability of producing 2-methylhopanoids within pustular and smooth microbial mats in Shark Bay are cyanobacteria.


Assuntos
Baías/microbiologia , Biomarcadores/análise , Cianobactérias/genética , Variação Genética , Sequência de Aminoácidos , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Primers do DNA/genética , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Metiltransferases de Proteína/genética , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA