Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233409

RESUMO

Layered perovskites of the Gd0.8-xBa0.8Ca0.4+xFe2O5+δ system show oxygen reduction reaction (ORR) activity. The layered crystal structure of these oxides is established by the interplay of the Gd3+, Ba2+, and Ca2+ locations with the ordering of the coordination polyhedra of the Fe3+ cations. Substitution of Gd3+ by Ca2+ increases the oxygen deficiency that is accommodated by the formation of layers of FeO5-squared pyramids intercalated with A-O layers containing mainly Gd3+. The presence of FeO5-squared pyramids in the crystal structure promotes the oxygen diffusion and then the ORR activity. Therefore, GdBa2Ca2Fe5O13 is the oxide of the system which presents lower area specific resistance (ASR) values when it is applied as an electrode in symmetrical cells using Ce0.9Gd0.1O2-δ as an electrolyte.

2.
Inorg Chem ; 59(3): 2024-2029, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944686

RESUMO

B-site-layer-ordered double perovskite Ca2FeMnO6 with unusually high valence Fe4+ was found to exhibit unusual oxygen-release behaviors, contrasting with those of the B-site-disordered perovskite having the identical chemical composition. During heating, the B-site-layer-ordered compound shows a stepwise oxygen release with successive valence changes from Fe4+ to Fe3+ through an intermediate Fe3.5+, whereas the B-site-disordered compound releases oxygen in a single step. The oxygen in Ca2FeMnO6 is released only from the two-dimensional Fe layers, and this selective oxygen release stabilizes the intermediate Fe3.5+ phase with in-plane-oxygen-vacancy ordering. Therefore, the B-site order/disorder strongly affects the oxygen-release behaviors associated with the oxygen-vacancy ordering.

3.
Inorg Chem ; 58(20): 14058-14067, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31596578

RESUMO

Two new perovskite compounds, NaLaInNbO6 and NaLaInTaO6, have been synthesized. Both compounds have a rock-salt ordering of the In/Nb or In/Ta cations and a layered ordering of the Na/La. They are unusual among this family of doubly cation ordered perovskites for having a +3/+5 combination of B/B' oxidation states instead of a divalent cation and W6+. Synchrotron powder diffraction and electron diffraction data show both compounds have tetragonal √2ap × âˆš2ap × 2ap unit cells. The octahedral tilt system of these compounds is complicated and seems to vary depending on the length scale considered. Bond valence considerations demonstrate that none of the tilt systems compatible with a tetragonal unit cell produce a stable structure. It is proposed that additional oxygen displacements are occurring on a local scale. The XRD data show that the B-site ordering is nearly complete in both cases, while the A-site cations show a lower degree of order. The tendency of the B'-cation to undergo a second order Jahn-Teller distortion is identified as having an influence over the degree of A-site ordering. Transmission electron microscopy shows fragmentation into nanosized domains with perpendicular orientations of the layered A-site cation ordering. Such structures may be polar over short length scales which could lead to interesting dielectric properties such as relaxor behavior. The prospects for finding new doubly cation ordered perovskites are also discussed.

4.
Inorg Chem ; 57(24): 15093-15104, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30512938

RESUMO

The mixed-valent iron arsenate hydroxide Fe13.52.22+(AsO4- x)8(OH)6, x = 0.25, was prepared using the reaction of iron metal with arsenate in aqueous solution and autogenous pressure. Its crystal structure reveals a dumortierite-like framework with mixed-valent Fe2+/Fe3+ in double chains creating channel walls. Remarkably, hexagonal channels consist of chains of face-sharing Fe2+O6 octahedra, 3/4th occupied, whereas AsO4 tetrahedra occupy triangular ones with a single " up" orientation according to the polar P63 mc symmetry. We have analyzed the transformation of this phase upon heating, in which several chemical processes interact, including dehydroxylation, arsenate to arsenite reduction, and oxidative exsolution of a significant part of iron (ca. 15%) found at the surface as hematite and amorphous Fe-rich surficial layer. It leaves a strongly disordered composite structure between several Fe3+-based subunits, in which ∼80% of them is ordered in a complex supercell. Because of the high degree of disorder, the crystal chemistry of the individual subunits and their plausible imbrication were considered to unravel the most plausible ideal 3D model.

5.
Inorg Chem ; 57(19): 12038-12049, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230323

RESUMO

The influence of rare earth (RE) elements on superconducting properties of the transition element (TE)-substituted TE xCu1- xSr2RECu2O y cuprates has not been sufficiently emphasized so far. In the case of molibdo-cuprates with the general formula Mo0.3Cu0.3Sr2RECu2O y, all the RE element containing compounds except La, Ce, and Lu can be prepared at room pressure. The influence of the crystal structure on the superconducting properties after ozone oxidation of the present system is reported selecting three groups of RE elements attending to their different atom sizes: small (Yb and Tm), medium (Gd), and big (Nd and Pr). Advanced transmission electron microscopy, various diffraction techniques, and spectroscopic analysis have been used to demonstrate that the increase of structural disorder complemented with a decrease in the hole content play a major role in the vanishing of superconductivity within the present system.

6.
ChemSusChem ; 10(14): 2978-2989, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28594114

RESUMO

The perovskite series Sr2 CoNb1-x Tix O6-δ (0≤x≤1) was investigated in the full compositional range to assess its potential as cathode material for solid oxide fuel cell (SOFC). The variation of transport properties and thus, the area specific resistances (ASR) are explained by a detailed investigation of the defect chemistry. Increasing the titanium content from x=0-1 produces both oxidation of Co3+ to Co4+ (from 0 up to 40 %) and oxygen vacancies (from 6.0 to 5.7 oxygen atom/formula unit), although each charge compensation mechanism predominates in different compositional ranges. Neutron diffraction reveals that samples with high Ti-contents lose a significant amount of oxygen upon heating above 600 K. Oxygen is partially recovered upon cooling as the oxygen release and uptake show noticeably different kinetics. The complex defect chemistry of these compounds, together with the compositional changes upon heating/cooling cycles and atmospheres, produce a complicated behavior of electrical conductivity. Cathodes containing Sr2 CoTiO6-δ display low ASR values, 0,13â€…Ω cm2 at 973 K, comparable to those of the best compounds reported so far, being a very promising cathode material for SOFC.


Assuntos
Condutividade Elétrica , Fontes de Energia Elétrica , Óxidos/química , Eletrodos , Oxigênio/química , Pressão , Temperatura
7.
Dalton Trans ; 46(5): 1624-1633, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28098284

RESUMO

SrFe0.25Co0.75O2.63 was synthesized by a solid-state reaction. Its structural study at room temperature using conventional X-ray as well as neutron powder diffraction, electron diffraction and high-resolution transmission electron microscopy is presented. An oxygen-vacancy ordering related to the "314" model known for the Sr3Y1Co4O10.5 oxide is proposed despite neither an A-site ordering nor an A-site mismatch. By means of Mössbauer spectroscopy, Mohr salt titration and the difference in the neutron cross sections of Fe and Co, a cation distribution within the crystallographic sites as the following Sr4(Fe0.143+Co0.363+)48h(Fe0.114+Co0.144+Co0.253+)48fO10.52 is suggested, highlighting a natural layered structure with Fe and Co in higher oxidation states in the oxygen replete layers than in the oxygen deficient ones.

8.
Inorg Chem ; 56(3): 1412-1417, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067507

RESUMO

Perovskite-related GdBaMnFeO5 and the corresponding oxidized phase GdBaMnFeO6, with long-range layered-type ordering of the Ba and Gd atoms have been synthesized. Oxidation retains the cation ordering but drives a modulation of the crystal structure associated with the incorporation of the oxygen atoms between the Gd layers. Oxidation of GdBaMnFeO5 increases the oxidation state of Mn from 2+ to 4+, while the oxidation state of Fe remains 3+. Determination of the crystal structure of both GdBaMnFeO5 and GdBaMnFeO6 is carried out at atomic resolution by means of a combination of advanced transmission electron microscopy techniques. Crystal structure refinements from synchrotron X-ray diffraction data support the structural models proposed from the TEM data. The oxidation states of the Mn and Fe atoms are evaluated by means of EELS and Mössbauer spectroscopy, which also reveals the different magnetic behavior of these oxides.

9.
Dalton Trans ; 44(23): 10867-74, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25881558

RESUMO

Layered-type ordering and oxygen vacancies ordering are revealed in GdBaMnFeO(6-δ) perovskite. Selected area electron diffraction and high-resolution transmission electron microscopy results indicate a modulation of the crystal structure. Ba and Gd ordering in (001)(p) layers is confirmed by high angle annular dark field scanning transmission electron microscopy and electron energy-loss spectroscopy. These techniques also revealed formation of layer-stacking defects in the crystals. Direct imaging of the oxygen sublattice is obtained by phase image reconstruction. Location of the oxygen vacancies in the (GdO)(x) layers is achieved by analysis of the intensity of the averaged phase image. Physical properties of the GdBaMnFeO(6-δ) perovskite, are likely to be strongly affected by its ordering effects and crystal microstructure. In this sense, layered-type GdBaMnFeO(6-δ) perovskite show better electrochemical properties as cathodes in SOFCs than ion disordered Gd(0.5)Ba(0.5)Mn(0.5)Fe(0.5)O(3-δ) perovskite.

10.
Inorg Chem ; 51(7): 4007-14, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385521

RESUMO

The structures of the doubly ordered perovskites NaCeMnWO(6) and NaPrMnWO(6), with rock salt ordering of the Mn(2+) and W(6+)B-site cations and layered ordering of the Na(+) and (Ce(3+)/Pr(3+)) A-site cations, have been studied by transmission electron microscopy, electron diffraction, neutron and synchrotron X-ray powder diffraction. Both compounds possess incommensurately modulated crystal structures. In NaCeMnWO(6) the modulation vector (with reference to the ideal ABX(3) perovskite subcell) is q ≈ 0.067a* (∼58.7 Å) and in NaPrMnWO(6)q ≈ 0.046a* (∼85.3 Å). In both compounds the superstructures are primarily the two-dimensional chessboard type, although some crystals of NaCeMnWO(6) were found with one-dimensional stripes. In some crystals of NaPrMnWO(6) there is a coexistence of chessboards and stripes. Modeling of neutron diffraction data shows that octahedral tilting plays an important role in the structural modulation.

11.
Acta Crystallogr B ; 65(Pt 6): 676-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19923695

RESUMO

A combination of selected-area electron diffraction (SAED), neutron powder diffraction (NPD) and high-resolution transmission electron microscopy (HRTEM) reveals a complex superstructure in the ordered perovskite NaLaMgWO(6). Through indexing of SAED patterns the unit-cell dimensions are found to be 46.8 x 7.8 x 7.9 A, which corresponds to a 12a(p) x 2a(p) x 2a(p) superstructure of the simple Pm3m perovskite unit cell. HRTEM images reveal the formation of an unmistakable stripe contrast that repeats with the same periodicity. Doubling of the b and c axes is brought about by a combination of layered ordering of Na and La, rock-salt ordering of Mg and W, and octahedral tilting. The a axis repeat distance results from a one-dimensional twinning of the octahedral tilts in combination with a compositional modulation. Modeling of the NPD pattern shows that the underlying tilt system is a(-)a(-)c(0) with tilt angles of approximately 8 degrees about the a and b axes. The octahedral tilt-twin boundaries run perpendicular to the a axis and are separated by 6a(p). Simulated HRTEM images show that octahedral tilt twinning alone cannot explain the stripes seen in the HRTEM images, rather a compositional modulation involving the A-site cations is necessary to explain the experimental images.

12.
J Am Chem Soc ; 130(45): 15028-37, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18937468

RESUMO

Transmission electron microscopy studies of the perovskite NaLaMgWO 6 reveal the formation of a complex, compositionally modulated structure. Annular dark field scanning transmission electron microscopy images and scanning transmission electron microscopy-electron energy-loss spectroscopy scans show that this modulation involves a repeating pattern of La-rich and La-poor stripes, each stripe 6 a p or approximately 24 A wide (where a p is the edge length of the simple cubic perovskite unit cell). High-resolution transmission electron microscopy images clearly show, and electron diffraction patterns confirm, a periodicity of 12 a p along either the [100] p or [010] p direction. Available evidence suggests a spontaneous separation into stripes that possess the nominal stoichiometry, NaLaMgWO 6, alternating with Na-poor/La-rich stripes that have a stoichiometry of (La x Na 1-3 x )LaMgWO 6. X-ray powder diffraction measurements are insensitive to this intricate structural complexity, which may be a more widespread feature of (A (+)Ln (3+))MM'O 6 perovskites than previously appreciated.

13.
Inorg Chem ; 47(3): 921-9, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-18166041

RESUMO

Strontium cerate (SrCeO(3)) is the parent phase of a family of prototype proton-conducting perovskites with important potential applications as electrolytes in protonic ceramic fuel cells, hydrogen-separation membranes, and sensors for hydrogen and humidity. Apparent nonstoichiometric behavior and the microstructure of SrCeO(3) have been investigated. Phase analysis by X-ray diffraction indicates that single-phase material in the system Sr(1+x)CeO(3+)delta is obtained for compositions x = 0.02-0.03 and that nominally stoichiometric SrCeO(3) (x = 0) synthesized by either solid-state reaction or the citrate method is Sr-rich. Selected area electron diffraction confirms that the system crystallizes with the GdFeO(3)-type orthorhombic perovskite structure (space group Pnma). Structural defects characterized by high-resolution transmission electron microscopy include twin domain boundaries and SrO-rich, Ruddlesden-Popper-type planar defects. Magnetic susceptibility measurements down to 2 K indicate that the Ce(3+) content is minor ( approximately 0.01 mol per formula unit for slow-cooled material) and does not influence the observed nonstoichiometry.

14.
Chemistry ; 13(19): 5607-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17415741

RESUMO

The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.


Assuntos
Óxido de Alumínio/química , Elementos da Série dos Lantanídeos/química , Compostos de Lítio/química , Titânio/química , Cristalização , Microscopia Eletrônica de Transmissão , Óxidos/química , Relação Estrutura-Atividade , Difração de Raios X
15.
J Am Chem Soc ; 126(11): 3587-96, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15025488

RESUMO

Three representative oxides of the La(2/3)(-)(x)()Li(3)(x)()TiO(3) system have been studied by selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and powder synchrotron X-ray diffraction. HRTEM showed that the materials have a complex microstructure. The SAED and HRTEM results have allowed us to propose a model to refine the crystal structure of these oxides that also accounts for their microstructure. The materials have a perovskite-related structure with a diagonal unit cell ( radical 2a(p) x radical 2a(p) x 2a(p)) as a consequence of the tilting of the TiO(6) octahedra. Ordering of lanthanum and lithium ions and vacancies along the 2a(p)-axis, as well as displacements of titanium ions from the center of the octahedra, have been determined. The size and shape of the domains have been obtained from the synchrotron X-ray diffraction data; in addition, other extended defects such as strains and compositional fluctuations have been detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA