Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31625145

RESUMO

OBJECTIVE: Monoallelic de novo gain-of-function variants in the voltage-gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss-of-function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss-of-function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild-type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A. METHODS: We identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells. RESULTS: We identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss-of-function, and one allele with altered biophysical properties consistent with partial loss-of-function. SIGNIFICANCE: These studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.

3.
Epileptic Disord ; 21(S1): 31-40, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149902

RESUMO

Since its first description, quantifying the burden of epileptiform abnormalities in sleep EEG has played a fundamental role in the diagnosis of Encephalopathy related to Status Epilepticus during slow Sleep (ESES). In fact, in the 1971 seminal paper by Tassinari's group and in the following studies on this syndrome, the amount of epileptiform discharges (EDs) was calculated as the percentage of slow sleep occupied by spike-and-waves and referred to as "spike and wave index" (SWI). However, nowadays it is becoming increasingly clear that the SWI alone does not explain the whole clinical course of patients affected by ESES. In this paper, we aim to provide a state-of-the-art summary of the quantitative EEG methods currently used in the ESES/CSWS literature, highlighting the possible pitfalls and discrepancies explaining the unsatisfactory correlation between SWI and clinical course. Furthermore; we illustrate a number of methodological refinements - taking into account inter-individual, intra-individual, and temporal variability of EDs - alongside "new" quantitative variables -including ED-related and sleep-related features - potentially useful to reach a reliable electro-clinical correlation in patients with ESES.

4.
Epilepsy Behav ; 97: 244-252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31254844

RESUMO

OBJECTIVE: The objective of the study was to investigate electroclinical and neuropsychological features, genetic background, and evolution of children with idiopathic encephalopathy with status epilepticus during slow sleep (ESES), including Landau-Kleffner syndrome (LKS). MATERIAL AND METHODS: All children diagnosed with idiopathic ESES at the Danish Epilepsy Centre between March 2003 and December 2014 were retrospectively reviewed. Repeated 24-hour electroencephalography (24-h EEG) recordings, neuropsychological assessments, and clinical-neurological evaluation were performed throughout the follow-up in all patients. In 13 children, genetic investigations were performed. RESULTS: We collected 24 children (14 males and 10 females). Mean age at ESES diagnosis was 6 years, and mean ESES duration was 2 years and 7 months. Twenty-one children had epileptic seizures. Three children had LKS. Topography of sleep-related EEG epileptic abnormalities was diffuse in 3 subjects, hemispheric in 6, multifocal in 9, and focal in 6. During the active phase of ESES, all children presented with a heterogeneous combination of behavioral and cognitive disturbances. In 14 children, a parallel between severity of the clinical picture and spike-wave index (SWI) was observed. We could not find a strict correlation between the type and severity of neurobehavioral impairment and the side/topography of sleep-related EEG discharges during the active phase of ESES. At the last follow-up, 21 children were in remission from ESES. Complete recovery from neurobehavioral disorders was observed in 5 children. Genetic assessment, performed in 13 children, showed GRIN2A variant in two (15.4%). SIGNIFICANCE: Our patients with idiopathic ESES showed a heterogeneous pattern of epileptic seizures, neurobehavioral disorders, and sleep EEG features. Only one-fourth of children completely recovered from the neuropsychological disturbances after ESES remission. Lack of correlation between severity/type of cognitive derangement and SWI and/or topography of sleep EEG epileptic abnormalities may suggest the contribution of additional factors (including impaired sleep homeostasis due to epileptic activity) in the neurobehavioral derangement that characterize ESES.

5.
Epileptic Disord ; 21(S1): 22-30, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162114

RESUMO

Encephalopathy related to Status Epilepticus during slow Sleep (ESES) is a peculiar electro-clinical condition, with variable etiologies, characterized by an age-dependent phenomenon of extreme activation of epileptic activity during sleep, i.e. "status epilepticus during sleep", that is strictly associated with the appearance of cognitive and behavioral disturbances. Even though the peculiar EEG picture is fundamental for the diagnosis of ESES, clear-cut and shared diagnostic criteria for defining the EEG boundaries of this syndrome are still lacking. The diagnosis of ESES can be further complicated by the variability of the EEG findings, that during the course of the disease can change from diffuse to more or less focal and viceversa, depending both on the spontaneous clinical evolution of this condition and/or on the effects of medications. Given the complexity and the heterogeneity of EEG parameters during the ESES course, it is important to correlate the EEG findings with the concomitant cognitive and behavioral status, possibly taking into account not only the spike-wave index, but also other parameters, such as for instance the topography of the epileptic abnormalities, their patterns of spread, and their fluctuations over time. Moreover, the epileptiform activity not only during sleep, but also during wakefulness, the presence of focal slowing, the organization of the EEG background and a derangement of the sleep architecture may play a role in determining the clinical picture.

6.
Genet Med ; 21(10): 2216-2223, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.

7.
Epilepsia ; 60(5): 830-844, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30968951

RESUMO

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.

8.
Ann Clin Transl Neurol ; 6(2): 386-391, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30847371

RESUMO

Mutations in the sodium-activated potassium channel gene KCNT1 have been associated with nonlesional sleep-related hypermotor epilepsy (SHE). We report the co-occurrence of mild malformation of cortical development (mMCD) and KCNT1 mutations in four patients with SHE. Focal cortical dysplasia type I was neuropathologically diagnosed after epilepsy surgery in three unrelated MRI-negative patients, periventricular nodular heterotopia was detected in one patient by MRI. Our findings suggest that KCNT1 epileptogenicity may result not only from dysregulated excitability by controlling Na+K+ transport, but also from mMCD. Therefore, pathogenic variants in KCNT1 may encompass both lesional and nonlesional epilepsies.

9.
Brain ; 142(2): 376-390, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615093

RESUMO

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
10.
Neurology ; 91(22): e2078-e2088, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413629

RESUMO

OBJECTIVE: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. METHODS: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. RESULTS: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. CONCLUSION: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall.

12.
Neurology ; 91(12): e1112-e1124, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30171078

RESUMO

OBJECTIVE: To delineate the electroclinical features of SCN8A infantile developmental and epileptic encephalopathy (EIEE13, OMIM #614558). METHODS: Twenty-two patients, aged 19 months to 22 years, underwent electroclinical assessment. RESULTS: Sixteen of 22 patients had mildly delayed development since birth. Drug-resistant epilepsy started at a median age of 4 months, followed by developmental slowing, pyramidal/extrapyramidal signs (22/22), movement disorders (12/22), cortical blindness (17/22), sialorrhea, and severe gastrointestinal symptoms (15/22), worsening during early childhood and plateauing at age 5 to 9 years. Death occurred in 4 children, following extreme neurologic deterioration, at 22 months to 5.5 years. Nonconvulsive status epilepticus recurred in 14 of 22 patients. The most effective antiepileptic drugs were oxcarbazepine, carbamazepine, phenytoin, and benzodiazepines. EEG showed background deterioration, epileptiform abnormalities with a temporo-occipital predominance, and posterior delta/beta activity correlating with visual impairment. Video-EEG documented focal seizures (FS) (22/22), spasm-like episodes (8/22), cortical myoclonus (8/22), and myoclonic absences (1/22). FS typically clustered and were prolonged (<20 minutes) with (1) cyanosis, hypomotor, and vegetative semiology, sometimes unnoticed, followed by (2) tonic-vibratory and (3) (hemi)-clonic manifestations ± evolution to a bilateral tonic-clonic seizure. FS had posterior-temporal/occipital onset, slowly spreading and sometimes migrating between hemispheres. Brain MRI showed progressive parenchymal atrophy and restriction of the optic radiations. CONCLUSIONS: SCN8A developmental and epileptic encephalopathy has strikingly consistent electroclinical features, suggesting a global progressive brain dysfunction primarily affecting the temporo-occipital regions. Both uncontrolled epilepsy and developmental compromise contribute to the profound impairment (increasing risk of death) during early childhood, but stabilization occurs in late childhood.

13.
Genet Med ; 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30206421

RESUMO

PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.

14.
Epilepsy Res ; 143: 79-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29677576

RESUMO

SCN8A-related epilepsies are often severe developmental and epileptic encephalopathies. Seizures can be treatment resistant, and patients suffer from severe intellectual disability. Reports have suggested that SCN8A-related epilepsies have a high mortality with SUDEP as the major underlying cause. SUDEP is a catastrophic event, and the risk of occurrence should be correctly and carefully discussed with patients and families. We tested the hypothesis of SUDEP as the main cause of death in SCN8A-related epilepsies by reviewing all the currently reported patients with SCN8A. In addition, we collected unpublished patients through an international network. In total, we reviewed the data of 190 patients. In our cohort, 10 patients were deceased, and the overall mortality was 5.3%. Within the ten deceased patients, age at death ranged from 16 months to 17 years; the majority (7/10) of them died in early childhood. Three patients died of probable or definite SUDEP. Thus, our data do not indicate an increased risk when compared to other DEEs. Indeed, death in SCN8A-related epilepsies seems to occur most often in children experiencing a relentless worsening of their epilepsy and neurological condition, rendering them susceptible to pulmonary infections and respiratory distress that ultimately can be fatal.

15.
Ann Neurol ; 83(5): 926-934, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29630738

RESUMO

OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.

16.
Clin Neurophysiol ; 129(4): 713-716, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29438819

RESUMO

OBJECTIVE: To investigate whether Posterior Dominant Rhythm (PDR) can be reliably assessed in sleep-EEG recordings and to investigate the diagnostic yield of standard-wake and sleep-recordings. METHODS: EEG recordings of 303 consecutive patients aged 18-88 years were analyzed. All patients had both standard-wake and sleep-recordings, including patients who had abnormal standard recordings. Melatonin was used in 6% of sleep EEGs, and sleep deprivation in 94%. The mean duration of sleep was 41 min. We measured the PDR frequency in standard and sleep-recordings, both before and after sleep. We compared the diagnostic yield of standard-wake and sleep EEG recordings. RESULTS: Compared to standard EEG, sleep-recordings showed a significantly lower PDR frequency, both when measured before and after sleep (p < 0.001). One-hundred-fifty-six patients (51%) had normal standard recordings, and 35 of them (22%) had abnormal findings in the sleep-recording. One-hundred-forty-seven patients had abnormal standard recordings and in 16 of them (11%) these abnormalities were not present in sleep-recording. CONCLUSIONS: PDR is significantly slower in the wake periods of sleep-recordings, compared to standard wake recordings. SIGNIFICANCE: Sleep and standard wake recordings are complementary.

17.
Epilepsia ; 59(2): 389-402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315614

RESUMO

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Ataxia/complicações , Ataxia/genética , Ataxia/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/complicações , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Resultado do Tratamento , Ácido Valproico/uso terapêutico , Adulto Jovem
18.
Clin Neurophysiol ; 129(1): 291-295, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102232

RESUMO

OBJECTIVE: To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. METHODS: EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. RESULTS: From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). CONCLUSIONS: Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. SIGNIFICANCE: Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Eletrodos/normas , Eletroencefalografia/instrumentação , Eletroencefalografia/normas , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
19.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050392

RESUMO

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Assuntos
Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/diagnóstico , Canal de Potássio Kv1.2/genética , Animais , Encefalopatias/complicações , Epilepsia/complicações , Epilepsia/genética , Estudos de Associação Genética , Mutação , Oócitos/fisiologia , Fenótipo , Xenopus
20.
Epilepsia ; 58(11): 1892-1901, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28960278

RESUMO

OBJECTIVE: In previous studies, we showed an altered overnight decrease of non-rapid-eye-movement (NREM) sleep slow waves in children with encephalopathy related to status epilepticus during sleep (ESES). Here, we test the hypothesis that these alterations renormalize after remission of ESES. Because overnight decrease of slow waves has been linked to brain recovery and cognition, we investigate whether cognitive outcome is related to overnight changes of slow waves. METHODS: We performed a retrospective analysis of longitudinal overnight electroencephalography (EEG) in 10 patients with idiopathic ESES. Automated slow wave detection and calculation of slope of slow waves during the first and last hour of NREM sleep were employed. Intraindividual comparisons were undertaken of the slope during active phase and after remission of ESES, and between patients after remission of ESES and healthy controls. Explorative analysis of the relationship between slow wave slope and cognitive outcome was performed. RESULTS: The slope of slow waves did not decrease significantly across the night during active ESES, particularly at the spike focus. After remission of ESES, the slope decreased significantly overnight. Compared to controls, there was no difference in overnight slope decrease. Association between slope and neuropsychological outcome showed best cognitive outcome after remission in those children (n = 3) who showed some degree of slope decline during active ESES. SIGNIFICANCE: This study provides evidence that alterations of overnight changes of NREM-sleep slow waves during active ESES are reversible when ESES resolves, and that the severity of neuropsychological compromise might be related to the extent of slow wave impairment during ESES. Our findings suggest that analysis of slow waves might serve as a prognostic factor regarding cognitive outcome. ESES may serve as disease model of pathologic slow wave sleep and our results might be expanded to epilepsies with spike wave activation in slow wave sleep not only in children but also in adults.


Assuntos
Encefalopatias/fisiopatologia , Eletroencefalografia/tendências , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Estado Epiléptico/fisiopatologia , Encefalopatias/diagnóstico , Criança , Pré-Escolar , Feminino , Humanos , Estudos Longitudinais , Masculino , Remissão Espontânea , Estudos Retrospectivos , Transtornos do Sono-Vigília/diagnóstico , Estado Epiléptico/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA