Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(16): 7906-14, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26208031

RESUMO

Surfactant-free nanocrystals of the model spin-crossover compound [Fe(phen)2(NCS)2] (phen: 1,10-phenanthroline) have been synthesized applying the reverse micelle technique. The morphology of the nanocrystals, characterized by scanning electronic microscopy, corresponds to rhombohedric platelets with dimensions ranging from 203 × 203 × 106 nm to 142 × 142 × 74 nm. Variation of the concentration of the Fe(BF4)2·6H2O salt in the synthesis has been found to have little influence on the crystallite size. In contrast, the solvent-surfactant ratio (ω) is critical for a good particle growth. The spin transition of the nanocrystals has been characterized by magnetic susceptibility measurements and Mössbauer spectroscopy. The nanocrystals undergo an abrupt and more cooperative spin transition in comparison with the bulk compound. The spin transition is centered in the interval of temperature of 175-185 K and is accompanied by 8 K of thermal hysteresis width. The crystallite quality more than the crystallite size is responsible for the higher cooperativity. The magnetic properties of the nanocrystals embedded in organic polymers such as polyethylene glycol, nujol, glycerol, and triton have been studied as well. The spin transition in the nanocrystals is affected by the polymer coating. The abrupt and first-order spin transition transforms into a more continuous spin transition as a result of the chemical pressure asserted by the organic polymers on the Fe(II) centers.

2.
Chemistry ; 20(40): 12864-73, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25145295

RESUMO

The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin-crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)4]} (1) with five-membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin-crossover transition with hysteresis loops 14-29 K wide and average critical temperatures Tc =201 K (1⋅fur), 167 K (1⋅pyr), and 114.6 K (1⋅thio) well below that of the parent compound 1 (Tc =295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1⋅fur, while 1⋅pyr and 1⋅thio show 50 % spin transition. For 1⋅fur the transformation between the HS and IS (middle of the plateau) phases occurs concomitantly with a crystallographic phase transition between the tetragonal space groups P4/mmm and I4/mmm, respectively. The latter space group is retained in the subsequent transformation involving the IS and the LS phases. 1⋅pyr and 1⋅thio display the tetragonal P4/mmm and orthorhombic Fmmm space groups, respectively, in both HS and IM phases. Periodic calculations using density functional methods for 1⋅fur, 1⋅pyr, 1⋅thio, and previously reported derivatives 1⋅CS2 , 1⋅I, 1⋅bz(benzene), and 1⋅pz(pyrazine) have been carried out to investigate the electronic structure and nature of the host-guest interactions as well as their relationship with the changes in the LS-HS transition temperatures of 1⋅Guest. Geometry-optimized lattice parameters and bond distances in the empty host 1 and 1⋅Guest clathrates are in general agreement with the X-ray diffraction data. The concordance between the theoretical results and the experimental data also comprises the guest molecule orientation inside the host and intermolecular distances. Furthermore, a general correlation between experimental Tc and calculated LS-HS electronic energy gap was observed. Finally, specific host-guest interactions were studied through interaction energy calculations and crystal orbital displacement (COD) curve analysis.

3.
Inorg Chem ; 52(21): 12777-83, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24124923

RESUMO

The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination slightly stabilizes the low-spin state of the Fe(II) ions shifting the critical temperatures of the spin transition by 8-12 K. DFT calculations have been performed to rationalize these observations.


Assuntos
Compostos Ferrosos/química , Dióxido de Enxofre/química , Adsorção , Cristalografia por Raios X , Estrutura Molecular
4.
Chemistry ; 19(21): 6591-6, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23576464

RESUMO

Two in one: A new iron(II) complex with short alkyl substituents exhibits an unprecedented bimodal behavior governed by the coexistence of three phases: two structurally different low-spin phases and one high-spin phase. The compound features two distinct well-separated strong cooperative spin-crossover transitions by varying the scan rate (see graphic).

5.
Beilstein J Org Chem ; 9: 342-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23504535

RESUMO

The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

6.
Inorg Chem ; 52(1): 3-5, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23259408

RESUMO

In this Communication, we report the synthesis and characterization of novel Hofmann-like spin-crossover porous coordination polymers of composition {Fe(L)[M(CN)(4)]}·G [L = 1,4-bis(4-pyridylethynyl)benzene and M(II) = Ni, Pd, and Pt]. The spin-crossover properties of the framework are closely related to the number and nature of the guest molecules included in the pores.


Assuntos
Compostos Ferrosos/química , Polímeros/química , Compostos Ferrosos/síntese química , Modelos Moleculares , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Temperatura
7.
Inorg Chem ; 51(24): 13078-80, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23215009

RESUMO

Here we present a novel three-dimensional iron(II) spin-crossover porous coordination polymer based on the bis(1,2,4-triazol-4-yl)adamantane (tr(2)ad) ligand and the [Au(CN)(2)](-) metalloligand anions with the formula {Fe(3)(tr(2)ad)(4)[Au(CN)(2))](2)}[Au(CN)(2)](4)·G. The sorption/desorption of guest molecules, water, and five/six-membered-ring organic molecules is easily detectable because the guest-free and -loaded frameworks present drastically distinct coloration and spin-state configurations.

8.
Inorg Chem ; 51(20): 11126-32, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23009692

RESUMO

Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH)(2)[Pd(SCN)(4)]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN)(4)](2-) anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN)(4)]}(∞). The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH(3)OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordinated methanol molecules of adjacent layers. Compound {Fe(pz)[Pd(SCN)(4)]} (2) is a three-dimensional porous coordination polymer formed by flat {Fe[Pd(SCN)(4)]}(∞) layers pillared by the pz ligand. Thermal analysis of 1a shows a clear desorption of the two coordinated CH(3)OH molecules giving a rather stable phase (1b), which presumably is a polymorphic form of 2. The magnetic properties of the three derivatives are typical of the high-spin Fe(II) compounds. However, compounds 1b and 2, with coordination sphere [FeN(6)], show thermal spin crossover behavior at pressures higher than ambient pressure (10(5) MPa).

9.
Chemistry ; 18(26): 8013-8, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22628190

RESUMO

All in a spin: A series of three-dimensional porous coordination polymer {Fe(dpe)[Pt(CN)(4)]}⋅G (dpe = 1,2-di(4-pyridyl)ethylene; G = phenazine, anthracene, or naphthalene) exhibiting spin crossover and host-guest functions is reported. The magnetic properties of the framework are very sensitive to the chemical nature (aromatic or hydroxilic solvents) and the size of the included guest molecules.


Assuntos
Compostos Ferrosos/síntese química , Polímeros/síntese química , Cristalografia por Raios X , Compostos Ferrosos/química , Magnetismo , Conformação Molecular , Estrutura Molecular , Polímeros/química
10.
Chem Commun (Camb) ; 48(39): 4686-8, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22476162

RESUMO

Inclusion of thiourea guest molecules in the tridimensional spin crossover porous coordination polymers {[Fe(pyrazine)[M(CN)(4)]} (M = Pd, Pt) leads to novel clathrates exhibiting unprecedented large thermal hysteresis loops of ca. 60 K wide centered near room temperature.

11.
J Am Chem Soc ; 134(11): 5083-9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22364147

RESUMO

A quasielastic neutron scattering and solid-state (2)H NMR spectroscopy study of the polymeric spin-crossover compound {Fe(pyrazine)[Pt(CN)(4)]} shows that the switching of the rotation of a molecular fragment--the pyrazine ligand--occurs in association with the change of spin state. The rotation switching was examined on a wide time scale (10(-13)-10(-3) s) by both techniques, which clearly demonstrated the combination between molecular rotation and spin-crossover transition under external stimuli (temperature and chemical). The pyrazine rings are seen to perform a 4-fold jump motion about the coordinating nitrogen axis in the high-spin state. In the low-spin state, however, the motion is suppressed, while when the system incorporates benzene guest molecules, the movements of the system are even more restricted.

12.
J Am Chem Soc ; 133(22): 8600-5, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21526852

RESUMO

Precise control of spin transition temperature (T(c)) is one of the most important challenges in molecular magnetism. A Hofmann-type porous coordination polymer {Fe(pz)[Pt(II)(CN)(4)]} (1; pz = pyrazine) exhibited cooperative spin transition near room temperature (T(c)(up) = 304 K and T(c)(down) = 284 K) and its iodine adduct {Fe(pz)[Pt(II/IV)(CN)(4)(I)]} (1-I), prepared by oxidative addition of iodine to the open metal sites of Pt(II), raised the T(c) by 100 K. DSC and microscopic Raman spectra of a solid mixture of 1-I and 1 revealed that iodine migrated from 1-I to 1 through the grain boundary after heating above 398 K. We have succeeded in precisely controlling the iodine content of {Fe(pz)[Pt(CN)(4)(I)(n)]} (1-In; n = 0.0-1.0), which resulted in consecutive modulation of T(c) in the range 300-400 K while maintaining the hysteresis width. Furthermore, it was demonstrated that iodine migration in the solid mixture was triggered by the spin transition of 1-I. The magnetically bistable porous framework decorating guest interactive open-metal-site in the pore surface makes it possible to modulate T(c) ad arbitrium through unique postsynthetic method using iodine migration.

14.
Inorg Chem ; 48(8): 3371-81, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19361239

RESUMO

The synthesis and characterization of a series of 1-3D cyanide-bridged iron(II)-copper(I) bimetallic coordination polymers formulated as {Fe(3-Xpy)(2)[Cu(3-Xpy)(z)(CN)(2)](2)}, where 3-Xpy is a 3-halogenpyridine ligand with X = F (z = 1.5, 1), Cl (z = 1, 2 and 3), Br (z = 1, 4), and I (z = 1, 5), are reported. In all derivatives, the Fe(II) ion lies in pseudoctahedral [FeN(6)] sites defined by four in situ formed [Cu(3-Xpy)(z)(CN)(2)](-) bridging ligands and two 3-Xpy terminal ligands occupying the equatorial and axial positions, respectively. 1 consists of stacks of corrugated grids whose square windows are defined by pseudotrigonal and pseudotetrahedral [Cu(3-Fpy)(CN)(2)](-) and [Cu(3-Fpy)(2)(CN)(2)](-) units, respectively. 2 is a 3D coordination polymer with the topology of the open-framework CdSO(4). The [Cu(3-Clpy)(CN)(2)](-) rods connecting the pseudooctahedral Fe(II) sites are arranged in such a way that interpenetration is avoided. 3, an architectural isomer of 2, is defined by arrays of linear chains. 4 and 5 are isostructural to 3. Polymer 1 is essentially a low-spin (LS) compound with ca. 19% of residual Fe(II) ions in the high-spin (HS) state at 293 K. It undergoes an irreversible spin transition at T(c) = 356 K. Subsequent cooling-warming cycles give a new spin-crossover behavior characterized by T(c) = 187 K. The structural analysis at 130 and 293 K and at 293 K after irreversible transformation (293 K*) reveals a large unit cell volume variation of 67 A(3) per Fe atom. In addition to the volume change associated with the spin-state conversion, remarkable bond and angle modifications around the Cu(I) sites account for the high flexible nature of the crystal. 2 displays a complete not well-resolved two-step spin conversion, T(c1) = 169 K and T(c2) = 210 K, reflecting the occurrence of two distinct crystallographically Fe(II) sites. The large unit cell volume variation per Fe atom in 2, 59 A(3), has been rationalized in terms similar to those for 1. 1D polymers 3-5 are HS compounds.


Assuntos
Cobre/química , Ferro/química , Nitrilos/química , Compostos Organometálicos/química , Piridinas/química , Cristalografia por Raios X , Ligantes , Magnetismo , Modelos Moleculares , Compostos Organometálicos/síntese química , Temperatura
15.
Angew Chem Int Ed Engl ; 48(26): 4767-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19294711

RESUMO

The ins and outs of spin: Using the microporous coordination polymer {Fe(pz)[Pt(CN)(4)]} (1, pz=pyrazine), incorporating spin-crossover subunits, two-directional magnetic chemo-switching is achieved at room temperature. In situ magnetic measurements following guest vapor injection show that most guest molecules transform 1 from the low-spin (LS) state to the high-spin (HS) state, whereas CS(2) uniquely causes the reverse HS-to-LS transition.

16.
Inorg Chem ; 48(8): 3710-9, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19284762

RESUMO

Three new tetranuclear compounds of formula [Fe(4)(mu-CN)(4)(phen)(4)(L)(2))](PF(6))(4) x G where L = tris(pyridin-2-ylmethyl)amine (TPMA) [G = 0] (1), (6-methylpyrid-2-ylmethyl)-bis(pyrid-2-ylmethyl)amine (MeTPMA) [G = 0] (2), or bis(6-methylpyrid-2-ylmethyl)-(pyrid-2-ylmethyl)amine (Me(2)TPMA) [G = NH(4)PF(6)] (3) and phen = 1,10-phenanthroline) have been synthesized and characterized. The three compounds crystallize in the C2/c space group and consist of [Fe(4)(mu-CN)(4)(phen)(4)(L)(2))](4+) square shaped cations with two distinct iron(II) sites. The sites, associated with [Fe(phen)(2)(CN)(2)] and [Fe(L)(NC)(2)] moieties, are connected by cyanide bridging ligands and reside in different [FeN(4)C(2)] and [FeN(6)] ligand field strength environments. For 1, the structural features of both sites at 100 and 293 K are those of an iron(II) atom in the low-spin state, according to the magnetic properties. At 370 K the structure of the [FeN(6)] site is consistent with a quite complete change of spin state from the low-spin state to the high-spin state, a behavior confirmed by the magnetic study. Introduction of a methyl substituent in the sixth position of one or two pyridine groups to get MeTPMA or Me(2)TPMA derivatives, respectively, induce in 2 and 3 notable steric constraint in the [FeN(6)] site making longer the average Fe-N bond distances thereby weakening the ligand field strength and stabilizing the high-spin state. The [FeN(4)C(2)] site remains in the low-spin state in the three compounds.


Assuntos
Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Magnetismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Temperatura
18.
Inorg Chem ; 47(7): 2552-61, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18293911

RESUMO

The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.

19.
Dalton Trans ; (5): 642-9, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18217120

RESUMO

A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer [Fe(pmd)(2)[Cu(CN)(2)](2)] is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light (lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 A(3) which is lower than the usually observed value of around 25-30 A(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 A. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, DeltaS = 35-37 J mol(-1) K(-1) lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation.

20.
Inorg Chem ; 46(20): 8182-92, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17764171

RESUMO

Two new series of compounds formulated {Fe(3-Xpyridine)2[Ag(CN)2]2} (X = F (1), Cl (2), Br (3), I (4)) and {Fe(3-Xpyridine)2[Ag(CN)2][Ag(3-Xpyridine)(CN)2]}.3-Xpy (X = Br (5), I (6)) have been synthesized and characterized. The six compounds are made up of stacking of slightly corrugated two-dimensional coordination polymers defined by sharing {Fe4[Ag(CN)2]4}n motifs. The stacking is different for the two families. In compounds 1-4 the layers are organized by pairs displaying argentophilic interactions; the Ag...Ag distance was found to be in the interval 3.0-3.3 A, while the Ag...Ag separation between two consecutive layers belonging to different pairs was found to be around 6 A. Compounds 5 and 6 are isostructural with a crystal packing defined by an almost homogeneous distribution of layers separated by around 8.3 A (referred to the Fe...Fe interlayer distance). Between the layers an uncoordinated 3-Xpyridine molecule is included. Another 3-Xpyridine molecule, which remains in the plane defined by the {Fe4[Ag(CN)2]4}n windows, coordinates one silver atom. Both series display quite different properties; at 300 K, 1-4 are pale-yellow and display similar distorted [FeN6] octahedron cores characteristic of the iron(II) ion in the high-spin state. 1 and 2 undergo a two-step (T(1)1/2 = 96 K and T(2)1/2 = 162 K) and a 50% spin transition (T1/2 = 106 K), respectively. Compounds 3 and 4 are high-spin compounds at ambient pressure. 5 and 6 are deep red in color at 300 K and undergo spin-crossover behavior at significantly higher temperatures T1/2 = 306 and 261 K, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA