Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(26): 14453-14464, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31210192

RESUMO

Single photon ionization and subsequent unimolecular ion decomposition were studied on jet-cooled benzophenone and fluorenone separately, using VUV synchrotron radiation in a photoion/photoelectron coincidence setup. Slow PhotoElectron Spectra (SPES) were recorded in coincidence with either the parent or the fragment ions for hν < 12.5 eV. Dissociative ionization is observed for benzophenone only. The full interpretation of the measurements, including the identification of the neutral and ionic species when dissociative ionization is at play, benefits from high level ab initio computations for determining the equilibrium structures and the energetics of the neutral and ionized molecules and of their fragments. Electronically excited states of the parent molecular ions were calculated also. From this analysis, an accurate experimental determination of the energetics of the benzophenone and fluorenone ions and of their fragmentation channels is available: adiabatic ionization energies of benzophenone at 8.923 ± 0.005 eV and of fluorenone at 8.356 ± 0.007 eV; and appearance energies of benzophenone fragment ions at 11.04 ± 0.02 eV (loss of C6H5), 11.28 ± 0.02 eV (loss of H) and 11.45 ± 0.02 eV (loss of CO). The corresponding fragmentation mechanisms are explored, showing likely concerted bonds rearrangement. Possible pre-ionizing fragmentation is discussed in light of the spectra presented. The structural rigidity of fluorenone diarylketone seems to be the origin of the inhibition of the fragmentation of its cation.

2.
Phys Chem Chem Phys ; 21(3): 1038-1045, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30289418

RESUMO

Near-infrared spectroscopy of the C2H2-Ar, Kr complexes was performed in the spectral region overlapping the ν3/ν2 + ν4 + ν5 Fermi-type resonance of C2H2. The experiment was conducted along the HElium NanoDroplet Isolation (HENDI) technique in order to study the coupling dynamics between a floppy molecular system (C2H2-Ar and C2H2-Kr) and a mesoscopic quantum liquid (the droplet). Calculations were performed using a spectral element based close-coupling program and state-of-the-art 2-dimensional potential energy surfaces to determine the bound states of the C2H2-Ar and C2H2-Kr complexes and simulate the observed spectra. This furnished a quantitative basis to unravel how the superfluid and non-superfluid components of the droplet affect the rotation and the deformation dynamics of the hosted complex.

3.
Phys Chem Chem Phys ; 20(44): 28105-28113, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383043

RESUMO

High resolution infrared spectroscopy combining an external cavity quantum cascade laser with a pulsed pin hole supersonic jet is used to investigate small van der Waals (vdW) heteroclusters containing SF6 and rare gas (Rg) atoms in the ν3 region of SF6. In the first step of the analysis, the rovibrational band contours of parallel and perpendicular transitions of 1 : 1 SF6-Rg heterodimers (Rg = Ar, Kr, Xe) are simulated to derive ground and excited state parameters and hence ground state and equilibrium S-Rg distances with a precision better than 0.5 pm. These values are used to assess quantum chemistry calculations (DFT-D method) as well as semi-empirical predictions (combination rules). In the second step, the spectral signatures of the 1 : 1 heterodimers and of larger heteroclusters containing up to three Rg atoms have been identified by considering reduced vibrational red shifts, i.e., shifts normalized to the average 1 : 1 red shift. The reduced vibrational red shifts within the series of bands observed and assigned to 1 : 1 and 1 : 2 complexes are found to be independent of the Rg atom, which suggests similar 1 : 1 and 1 : 2 structures along the Rg series. In addition, the increasing number of bands when going from monomer to 1 : 2 complexes illustrates the increased lifting of vibrational degeneracy induced by Rg solvation. Finally, the vibrational shifts of the 1 : 1 SF6-Rg heterodimers are found to fit an intermolecular interaction model in which long-range attractive and short-range repulsive contributions to the vibrational shift are found to partially cancel out, the former being dominant. From the same model, well depths are obtained and are found to compare well with quantum chemistry calculations and semi-empirical combination rules.

4.
Phys Chem Chem Phys ; 20(16): 11206-11214, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632903

RESUMO

The present work combines time-resolved photoelectron spectroscopy on isolated species with high-level data processing to address an issue which usually pertains to materials science: the electronic relaxation dynamics towards the formation of a self-trapped exciton (STE). Such excitons are common excited states in ionic crystals, silica and rare gas matrices. They are associated with a strong local deformation of the matrix. Argon clusters were taken as a model. They are excited initially to a Wannier exciton at 14 eV and their evolution towards the formation of an STE has showed an unusual type of vibronic relaxation where the electronic excitation of the cluster decreases linearly as a function of time with a 0.59 ± 0.06 eV ps-1 rate. The decay was followed for 3.0 ps, and the STE formation occurred in ∼5.1 ± 0.7 ps.

5.
Phys Chem Chem Phys ; 19(26): 17224-17232, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28639666

RESUMO

Taking advantage of a versatile set-up, combining pulsed pin hole or slit nozzle supersonic expansion with an external cavity quantum cascade laser, the rovibrational absorption spectrum of the SF6 dimer in the ν3 mode region has been revisited at high resolution under various experimental conditions in SF6:He mixtures. Two new rotationally resolved spectral bands have been identified in the range of the parallel band of the dimer spectrum in addition to that previously reported. Among these three spectral features, two of them are assigned to conformations of the dimer (noted #1 and #2), clearly distinguished from their different S-S interatomic distances, i.e. 474 and 480 pm respectively. The third one is assigned to a (SF6)2-He complex, from comparison with additional experiments in which (SF6)2-Rg heterotrimers (Rg = Ne, Ar, Kr, Xe) are observed. A schematic picture of the potential energy landscape of the SF6 dimer in terms of a nearly flat surface is proposed to account for the conformational relaxation observed in the expansions and for the structure of the (SF6)2-Rg heterotrimers, which are exclusively formed from the conformer #2 dimer. Although modelling qualitatively supports this picture, much effort has still to be achieved from a theoretical point of view to reach a quantitative agreement with the present benchmark experimental data both in terms of structure and energetics.

6.
Phys Chem Chem Phys ; 18(33): 22914-20, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27485671

RESUMO

Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.

7.
J Phys Chem A ; 119(23): 6148-54, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25866992

RESUMO

We report on the single photoionization of jet-cooled benzophenone using a tunable source of VUV synchrotron radiation coupled with a photoion/photoelectron coincidence acquisition device. The assignment and the interpretation of the spectra are based on a characterization by ab initio and density functional theory calculations of the geometry and of the electronic states of the cation. The absence of structures in the slow photoelectron spectrum is explained by a congestion of the spectrum due to the dense vibrational progressions of the very low frequency torsional mode in the cation either in pure form or in combination bands. Also a high density of electronic states has been found in the cation. Presently, we estimate the experimental adiabatic and vertical ionization energy of benzophenone at 8.80 ± 0.01 and 8.878 ± 0.005 eV, respectively. The ionization energy as well as the energies of the excited states are compared to the calculated ones.

8.
Phys Chem Chem Phys ; 16(20): 9610-8, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24728443

RESUMO

Benzophenone is a prototype molecule for photochemistry in the triplet state through its high triplet yield and reactivity. We have investigated its dynamics of triplet formation under the isolated gas phase conditions via femtosecond and nanosecond time resolved photoelectron spectroscopy. This represents the complete evolution from the excitation in S2 to the final decay of T1 to the ground state S0. We have found that the triplet formation can be described almost as a direct process in preparing T1, the lowest reacting triplet state, from the S1 state after S2 → S1 internal conversion. The molecule was also deposited by a pick-up technique on cold argon clusters providing a soft relaxation medium without evaporation of the molecule and the mechanism was identical. This cluster technique is a model for medium influenced electronic relaxation and provides a continuous transition from the isolated gas phase to the relaxation dynamics in solution.

9.
Phys Chem Chem Phys ; 16(2): 516-26, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24121442

RESUMO

This paper is a joint experimental and theoretical approach concerning a molecule deposited on a large argon cluster. The spectroscopy and the dynamics of the deposited molecule are measured using the photoelectron spectroscopy. The absorption spectrum of the deposited molecule shows two solvation sites populated in the ground state. The combined dynamics reveals that the population ratio of the two sites is reversed when the molecule is electronically excited. This work provides the timescale of the corresponding solvation dynamics. Theoretical calculation supports the interpretation. More generally, close examination of the short time dynamics (0-6 ps) of DABCO···Ar(n) gives insights into the ultrafast relaxation dynamics of molecules deposited at interfaces and provides hence the time scale for deposited molecules to adapt to their neighborhoods.

10.
J Phys Chem Lett ; 5(19): 3399-403, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26278452

RESUMO

X-ray photoelectron spectroscopy (XPS) is a very efficient and still progressing surface analysis technique. However, when applied to nano-objects, this technique faces drawbacks due to interactions with the substrate and sample charging effects. We present a new experimental approach to XPS based on coupling soft X-ray synchrotron radiation with an in-vacuum beam of free nanoparticles, focused by an aerodynamic lens system. The structure of the Si/SiO2 interface was probed without any substrate interaction or charging effects for silicon nanocrystals previously oxidized in ambient air. Complete characterization of the surface was obtained. The Si 2p core level spectrum reveals a nonabrupt interface.

11.
Phys Rev Lett ; 109(19): 193401, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215381

RESUMO

This experimental work focuses on the complex autoionization dynamics of Ar(2) clusters below the first ionization energy of the argon atom. Ar(2) is submitted to vacuum ultraviolet radiation, and the photoelectron spectra are collected in coincidence with the cluster ions. The ionization dynamics is revealed by the dependence on the photon energy. We applied a new experimental method which we developed to analyze the photoelectron signal. Thus, we were able (i) to get the complete vibrational progression of Ar(2)(+) that was never observed up to now, especially identifying the 0-0 transition overcoming the usual Franck-Condon limitations during single photoionization, and (ii) to obtain the projections of the vibrational wave functions of the autoionizing states over the Ar(2)(+) functions. This method provides a powerful tool to test the potential energy curves computed by high level theoretical calculations on Rydberg states.

12.
J Phys Chem A ; 115(34): 9620-32, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21770416

RESUMO

The spectroscopy of the ZrF radical, produced by a laser ablation-molecular beam experimental setup, has been investigated for the first time using a two-color two-photon (1 + 1') REMPI scheme and time-of-flight (TOF) mass spectrometry detection. The region of intense bands 400-470 nm has been studied, based upon the first spectroscopic observations of the isovalent ZrCl radical by Carroll and Daly. The overall spectrum observed is complex. However, simultaneous and individual ion detection of the five naturally occurring isotopologues of ZrF has provided a crucial means of identifying band origins and characterization via the isotopic shift, δ(iso), of the numerous vibronic transitions recorded. Hence, five (0-0) transitions, of which only two were free of overlap with other transitions, have been identified. The most intense (0-0) transition at 23113 cm(-1) presented an unambiguously characteristic RQP rotational structure. From rotational contour simulations of the observed spectra, the nature of the ground electronic state is found to be unambiguously of (2)Δ symmetry, leading to the assignment of this band as (0-0) (2)Δ â† X(2)Δ at 23113 cm(-1). A set of transitions (1-0) (2)Δ â† X(2)Δ at 22105 cm(-1) and (2-0) (2)Φ â† X(2)Δ at 22944 cm(-1) involving the X(2)Δ state has also been identified and analyzed. Furthermore, a second series of transitions with lesser intensity has also been related to the long-lived metastable (4)Σ(-) state: (3-0) (4)Π(-1/2) ← (4)Σ(-) at 21801 cm(-1), (2-0) (4)Π(-1/2) ← (4)Σ(-) at 21285 cm(-1) and (2-0) (4)Σ(-) ← (4)Σ(-) at 23568 cm(-1). These spectroscopic assignments are supported by MRCI ab initio calculations, performed using the MOLPRO quantum chemistry package, and show that the low-lying excited states of the ZrF radical are the (4)Σ(-) and (4)Φ states lying at 2383 and 4179 cm(-1) respectively above the ground X(2)Δ state. The difference in the nature of ground state and ordering of the first electronic states with TiF (X(4)Φ)(2-4) and ZrCl,(5) respectively, is examined in terms of the ligand field theory (LFT)(7) applied to diatomic molecules. These results give a precise description of the electronic structure of the low lying electronic states of the ZrF transition metal radical.


Assuntos
Química Física , Halogênios/química , Elementos de Transição/química , Elétrons , Lasers , Ligantes , Estrutura Molecular , Fótons , Teoria Quântica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Termodinâmica , Vibração
13.
Phys Rev Lett ; 99(10): 103401, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17930387

RESUMO

We have investigated the fission following a Coulomb explosion in argon clusters (up to Ar800) irradiated by a femtosecond infrared laser with moderate intensity IL approximately 10(13) W cm(-2). We report the a priori surprising observation of well-defined velocity distributions of the ionized fragments Ar+n<50. This is interpreted by the formation of a valence shell excited charged ion, followed by relaxation, charge transfer by autoionizing collision at very short distance, and asymmetric fission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA