Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Nat Microbiol ; 4(8): 1378-1388, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31110366

RESUMO

Mycobacterium tuberculosis (Mtb)-derived components are usually recognized by pattern recognition receptors to initiate a cascade of innate immune responses. One striking characteristic of Mtb is their utilization of different type VII secretion systems to secrete numerous proteins across their hydrophobic and highly impermeable cell walls, but whether and how these Mtb-secreted proteins are sensed by host immune system remains largely unknown. Here, we report that MPT53 (Rv2878c), a secreted disulfide-bond-forming-like protein of Mtb, directly interacts with TGF-ß-activated kinase 1 (TAK1) and activates TAK1 in a TLR2- or MyD88-independent manner. MPT53 induces disulfide bond formation at C210 on TAK1 to facilitate its interaction with TRAFs and TAB1, thus activating TAK1 to induce the expression of pro-inflammatory cytokines. Furthermore, MPT53 and its disulfide oxidoreductase activity is required for Mtb to induce the host inflammatory responses via TAK1. Our findings provide an alternative pathway for host signalling proteins to sense Mtb infection and may favour the improvement of current vaccination strategies.

2.
Emerg Microbes Infect ; 8(1): 734-748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130074

RESUMO

Many pathogens infect hosts through various immune evasion strategies. However, the molecular mechanisms by which pathogen proteins modulate and evade the host immune response remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a pathological strain that can induce mitogen-activated protein (MAP) kinase (Erk, Jnk and p38 MAPK) and NF-κB pathway activation and proinflammatory cytokine production, which then causes diarrheal diseases such as hemorrhagic colitis and hemolytic uremic syndrome. Transforming growth factor ß-activated kinase-1 (TAK1) is a key regulator involved in distinct innate immune signalling pathways. Here we report that EHEC translocated intimin receptor (Tir) protein inhibits the expression of EHEC-induced proinflammatory cytokines by interacting with the host tyrosine phosphatase SHP-1, which is dependent on the phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs). Mechanistically, the association of EHEC Tir with SHP-1 facilitated the recruitment of SHP-1 to TAK1 and inhibited TAK1 phosphorylation, which then negatively regulated K63-linked polyubiquitination of TAK1 and downstream signal transduction. Taken together, these results suggest that EHEC Tir negatively regulates proinflammatory responses by inhibiting the activation of TAK1, which is essential for immune evasion and could be a potential target for the treatment of bacterial infection.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Fatores de Virulência/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Células HEK293 , Humanos , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Células RAW 264.7
3.
Arch Biochem Biophys ; 667: 49-58, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31029687

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has an alarming mortality rate, and the fast-growing drug resistance of Mtb necessitates the discovery and application of new therapeutic agents. Although Sirt1 is a key regulator in metabolic, cardiovascular and other age-related diseases, its role in the regulation of antibacterial immunity is unclear. Here, we have reported that Sirt1 expression was decreased, and the decreased Sirt1 level was correlated with increased pro-flammatory cytokines and TAK1 phosphorylation in active TB patients. Our mechanistic experiments showed that Sirt1 direclty interacted with TAK1 and suppressed its activation. Further, Sirt1+/- macrophages infected with Mtb exhibited enhanced activation of TAK1, MAPKs and NF-κB, as well as simultaneously elevated expression of pro-inflammatory cytokines. Moreover, Sirt1+/- mice exhibited overt inflammation, as indicated by the significant abundance of pro-inflammatory cytokines, and were more susceptible to Mtb infection than wild-type mice. Overall, the findings indicate that inhibition of Sirt1 expression by Mtb infection enhances TAK1 activation, and this in turn enhances the secretion of IL-6 and TNF-α via activation of the p65/p38/JNK/ERK signaling pathways. Treatment with resveratrol, which is known that one of its multiple effects is Sirt1 activation, in Mtb-infected macrophages inhibited the activation of TAK1, MAPK and NF-κB pathways, and the pro-inflammatory cytokine levels. Consitently, mice treated with resveratrol were more resistant to Mtb infection. The potent therapeutic effects of resveratrol against Mtb infection indicate that Sirt1 could be a novel therapeutic target for the treatment of TB.

4.
EMBO Rep ; 20(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30872316

RESUMO

Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING-dependent release of type I IFN Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe- and danger-associated molecular patterns that contribute to host-microbe crosstalk during health and disease.

5.
Nat Commun ; 10(1): 746, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765691

RESUMO

Excessive or uncontrolled release of proinflammatory cytokines caused by severe viral infections often results in host tissue injury or even death. Phospholipase C (PLC)s degrade phosphatidylinositol-4, 5-bisphosphate (PI(4,5)P2) lipids and regulate multiple cellular events. Here, we report that PLCß2 inhibits the virus-induced expression of pro-inflammatory cytokines by interacting with and inhibiting transforming growth factor-ß-activated kinase 1 (TAK1) activation. Mechanistically, PI(4,5)P2 lipids directly interact with TAK1 at W241 and N245, and promote its activation. Impairing of PI(4,5)P2's binding affinity or mutation of PIP2-binding sites on TAK1 abolish its activation and the subsequent production of pro-inflammatory cytokines. Moreover, PLCß2-deficient mice exhibit increased expression of proinflammatory cytokines and a higher frequency of death in response to virus infection, while the PLCß2 activator, m-3M3FBS, protects mice from severe Coxsackie virus A 16 (CVA16) infection. Thus, our findings suggest that PLCß2 negatively regulates virus-induced pro-inflammatory responses by inhibiting phosphoinositide-mediated activation of TAK1.


Assuntos
Infecções por Coxsackievirus/metabolismo , Citocinas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/metabolismo , Animais , Células Cultivadas , Cercopithecus aethiops , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Citocinas/genética , Enterovirus/fisiologia , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C beta/genética , Ligação Proteica , Células Vero
6.
BMC Biol ; 17(1): 7, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683096

RESUMO

BACKGROUND: The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), especially those that are multidrug resistant poses a serious threat to global tuberculosis control. However, the mechanism underlying the occurrence of drug resistance against more than one drug is poorly understood. Given that the Beijing/W strains are associated with outbreaks and multidrug resistance, they may harbor a genetic advantage and provide useful insight into the disease. One marker found in all Beijing/W Mtb strains is a deletion of RD105 region that results in a gene fusion, Rv0071/74, with a variable number (3-9 m) of VDP (V: Val, D: Asp; P: Pro) repeats (coded by gtggacccg repeat sequences) at the N-terminal. Here, we report that this variable number of VDP repeats in Rv0071/74 regulates the development of multidrug resistance. RESULTS: We collected and analyzed 1255 Beijing/W clinical strains. The results showed that the number of VDP repeats in Rv0071/74 was related to the development of multidrug resistance, and the deletion of Rv0071/74-9 m from Beijing/W clinical strain restored drug susceptibility. Rv0071/74-9 m also increased resistance to multiple drugs when transferred to different mycobacterial strains. Cell-free assays indicate that the domain carrying 4-9 VDP repeats (4-9 m) showed a variable binding affinity with peptidoglycan and Rv0071/74 cleaves peptidoglycan. Furthermore, Rv0071/74-9 m increased cell wall thickness and reduced the intracellular concentration of antibiotics. CONCLUSIONS: These findings not only identify Rv0071/74 with VDP repeats as a newly identified multidrug resistance gene but also provide a new model for the development of multiple drug resistance.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Deleção de Sequência , Genótipo , Mycobacterium tuberculosis/efeitos dos fármacos
7.
Nat Commun ; 9(1): 4072, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287856

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), and remains a leading public health problem. Previous studies have identified host genetic factors that contribute to Mtb infection outcomes. However, much of the heritability in TB remains unaccounted for and additional susceptibility loci most likely exist. We perform a multistage genome-wide association study on 2949 pulmonary TB patients and 5090 healthy controls (833 cases and 1220 controls were genome-wide genotyped) from Han Chinese population. We discover two risk loci: 14q24.3 (rs12437118, Pcombined = 1.72 × 10-11, OR = 1.277, ESRRB) and 20p13 (rs6114027, Pcombined = 2.37 × 10-11, OR = 1.339, TGM6). Moreover, we determine that the rs6114027 risk allele is related to decreased TGM6 transcripts in PBMCs from pulmonary TB patients and severer pulmonary TB disease. Furthermore, we find that tgm6-deficient mice are more susceptible to Mtb infection. Our results provide new insights into the genetic etiology of TB.

8.
Nature ; 563(7729): 131-136, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356214

RESUMO

Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING-IRF3-type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215-mediated by B-lymphoid tyrosine kinase-facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS-PARP1 interaction impedes the formation of the PARP1-Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.

9.
Nat Commun ; 9(1): 4295, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327467

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) kills millions every year, and there is urgent need to develop novel anti-TB agents due to the fast-growing of drug-resistant TB. Although autophagy regulates the intracellular survival of Mtb, the role of calcium (Ca2+) signaling in modulating autophagy during Mtb infection remains largely unknown. Here, we show that microRNA miR-27a is abundantly expressed in active TB patients, Mtb-infected mice and macrophages. The target of miR-27a is the ER-located Ca2+ transporter CACNA2D3. Targeting of this transporter leads to the downregulation of Ca2+ signaling, thus inhibiting autophagosome formation and promoting the intracellular survival of Mtb. Mice lacking of miR-27a and mice treated with an antagomir to miR-27a are more resistant to Mtb infection. Our findings reveal a strategy for Mtb to increase intracellular survival by manipulating the Ca2+-associated autophagy, and may also support the development of host-directed anti-TB therapeutic approaches.

10.
PLoS Negl Trop Dis ; 12(7): e0006499, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975692

RESUMO

BACKGROUND: Wild mammals serve as reservoirs for a variety of microbes and play an important role in the enzootic cycles of these microbes. Some of them are vector-borne bacteria in the genera Anaplasma, Ehrlichia and Rickettsia of the order Rickettsiales, which can cause febrile illnesses in human beings as well as animals. Anaplasma spp., Ehrlichia spp. and many spotted fever group (SFG) Rickettsia spp. are transmitted to mammalian hosts by tick vectors during blood meals. As a powerful sequencing method, the next generation sequencing can reveal the complexity of bacterial communities in humans and animals. Compared with limited studies on blood microbiota, however, much fewer studies have been carried out on spleen microbiota, which is very scarce in wild mammals. Chongming Island is the third biggest island in China. It was unclear whether there were any vector-borne bacteria in Chongming Island. In the present study, we explored the bacterial microbiota in the spleens of wild mice and shrews from the rural areas of Chongming Island and investigated the prevalence of vector-borne bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNAs were extracted from the spleen samples of 35 mice and shrews. The 16S rDNA V3-V4 regions of the DNA extracts were amplified by PCR and subjected to the 16S rDNA-targeted metagenomic sequencing on an Illumina MiSeq platform. All the 35 spleen samples obtained data with sufficient coverage (99.7-99.9%) for analysis. More than 1,300,000 sequences were obtained after quality control and classified into a total of 1,967 operational taxonomic units (OTUs) clustered at 97% similarity. The two most abundant bacterial phyla were Firmicutes and Proteobacteria according to the analysis of rarefied sequences. Among the bacterial communities detected in this study, Anaplasma, Rickettsia and Coxiella were adjacently clustered by hierarchical analysis. Significant differences in many bacterial features between Anaplasma-positive and Anaplasma-negative samples were identified by LEfSe analysis and Wilcoxon rank-sum test, suggesting that the Anaplasma-infection of small wild mammals was associated with a specific pattern of spleen microbiota. CONCLUSIONS/SIGNIFICANCE: Our study has comprehensively characterized the complex bacterial profiles in the spleens of wild mice and shrews from Chongming Island, Shanghai city. This work has revealed distinct spleen bacterial communities associated with tick-borne bacteria in wild animals. The detection of tick-borne bacteria highlights the risk of contracting pathogens with public health importance upon tick-exposure in the studied areas.


Assuntos
Bactérias/isolamento & purificação , Camundongos/microbiologia , Microbiota , Murinae/microbiologia , Ratos/microbiologia , Musaranhos/microbiologia , Baço/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , Bactérias/genética , China , DNA Bacteriano/genética , Reservatórios de Doenças/microbiologia , Feminino , Masculino , Filogenia , Carrapatos/microbiologia
11.
Cancer Lett ; 431: 22-30, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29803788

RESUMO

Tuberculosis (TB) is one of the most fatal infectious diseases, affecting one third of the world's population. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host's immune system for its long-term intracellular survival. MicroRNAs (miRNAs) are crucial post-transcriptional regulators of immune response. They act by negatively regulating the expression levels of important genes in both innate and adaptive immunity. It has been established in recent studies that the host immune response against Mtb is regulated by many miRNAs, most of which are induced by Mtb infection. Moreover, differential expression of miRNA in tuberculosis (TB) patients may help distinguish between TB patients and healthy individuals or latent TB. In this review, we present the recent advancements on the miRNA regulation of the host responses against Mtb infection, as well as the potential of miRNAs to as biomarkers for TB diagnosis.

12.
Cell Death Discov ; 4: 17, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29531814

RESUMO

The epithelial-mesenchymal transition (EMT) is a multifunctional cell process involved in the pathogenesis of numerous conditions, including fibrosis and cancer. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by fibroblast accumulation and collagen deposition in the lungs. The fibroblasts involved in this process partially originate from lung epithelial cells via the EMT. Evidence suggests that the EMT contributes to progression, invasion, and metastasis of various types of cancer. We screened a series of 80 compounds for the ability to interfere with the EMT and potentially be applied as a therapeutic for IPF and/or lung cancer. We identified 2-aminopurine (2-AP), a fluorescent analog of guanosine and adenosine, as a candidate in this screen. Herein, we demonstrate that 2-AP can restore E-cadherin expression and inhibit fibronectin and vimentin expression in TGF-ß1-treated A549 lung cancer cells. Moreover, 2-AP can inhibit TGF-ß1-induced metastasis of A549 cells. This compound significantly attenuated bleomycin (BLM)-induced pulmonary inflammation, the EMT, and fibrosis. In addition, 2-AP treatment significantly decreased mortality in a mouse model of pulmonary fibrosis. Collectively, we determined that 2-AP could inhibit metastasis in vitro by suppressing the TGF-ß1-induced EMT and could attenuate BLM-induced pulmonary fibrosis in vivo. Results of this study suggest that 2-AP may have utility as a treatment for lung cancer and pulmonary fibrosis.

13.
Emerg Microbes Infect ; 7(1): 34, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29559631

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) infection remains a large global public health problem. One striking characteristic of Mtb is its ability to adapt to hypoxia and trigger the ensuing transition to a dormant state for persistent infection, but how the hypoxia response of Mtb is regulated remains largely unknown. Here we performed a quantitative acetylome analysis to compare the acetylation profile of Mtb under aeration and hypoxia, and showed that 377 acetylation sites in 269 Mtb proteins were significantly changed under hypoxia. In particular, deacetylation of dormancy survival regulator (DosR) at K182 promoted the hypoxia response in Mtb and enhanced the transcription of DosR-targeted genes. Mechanistically, recombinant DosRK182R protein demonstrated enhanced DNA-binding activity in comparison with DosRK182Q protein. Moreover, Rv0998 was identified as an acetyltransferase that mediates the acetylation of DosR at K182. Deletion of Rv0998 also promoted the adaptation of Mtb to hypoxia and the transcription of DosR-targeted genes. Mice infected with an Mtb strain containing acetylation-defective DosRK182R had much lower bacterial counts and less severe histopathological impairments compared with those infected with the wild-type strain. Our findings suggest that hypoxia induces the deacetylation of DosR, which in turn increases its DNA-binding ability to promote the transcription of target genes, allowing Mtb to shift to dormancy under hypoxia.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Tuberculose/microbiologia , Acetilação , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Proteínas Quinases/genética
14.
J Infect Dis ; 218(2): 312-323, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29228365

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global threat to human health, but knowledge of the molecular mechanisms underlying the pathogenesis of tuberculosis is still limited. Although Notch4, a member of the Notch receptor family, is involved in the initiation of mammary tumors, its function in M. tuberculosis infection remains unclear. In this study, we found that Notch4-deficient mice were more resistant to M. tuberculosis infection, with a much lower bacterial burden and fewer pathological changes in the lungs. Notch4 inhibited M. tuberculosis-induced production of proinflammatory cytokines by interaction with TAK1 and inhibition of its activation. Furthermore, we found that Notch intracellular domain 4 prevented TRAF6 autoubiquitination and suppressed TRAF6-mediated TAK1 polyubiquitination. Finally, Notch inhibitors made mice more resistant to M. tuberculosis infection. These results suggest that Notch4 is a negative regulator of M. tuberculosis-induced inflammatory response, and treatment with a Notch inhibitor could serve as a new therapeutic strategy for tuberculosis.

15.
Cell Mol Immunol ; 14(12): 963-975, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28890547

RESUMO

The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Mycobacterium tuberculosis/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Tuberculose/imunologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Fagocitose , Transdução de Sinais
16.
J Invertebr Pathol ; 149: 66-75, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28782510

RESUMO

The biopesticide used most effectively to control mosquito and blackfly vectors of human diseases worldwide is Bacillus thuringiensis subsp. israelensis. The high efficacy of this bacterium is due to synergistic interactions among four protein entomotoxins assembled individually into a single parasporal body (PB) during sporulation. Cyt1Aa, the primary synergist, is the most abundant toxin, comprising approximately 55% of the PB's mass. The other proteins are Cry11Aa at ∼35%, and Cry4Aa and Cry4Ba, which together account for the remaining ∼10%. The molecular genetic basis for the comparatively large amount of Cyt1Aa synthesized is unknown. Here, in addition to the known strong BtI (σE) and BtII (σK) promoters, we demonstrate a third promoter (BtIII) that has high identity to the σE promoter of Bacillus subtilis, contributes to the large amount of Cyt1Aa synthesized. We also show that a cyt1Aa-BtIII construct was not functional in a σE-deficient strain of B. subtilis. Comparison of transcription levels and protein profiles for recombinant strains containing different combinations of BtI, BtII and BtIII, or each promoter alone, showed that BtIII is active throughout sporulation. We further demonstrate that a stable stem-loop in the 3'-untranslated region (3'-UTR, predicted ΔG=-27.6) contributes to the high level of Cyt1Aa synthesized.


Assuntos
Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Regiões Promotoras Genéticas
17.
Eur J Immunol ; 47(9): 1414-1426, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28744851

RESUMO

The innate immune system initiates immune responses by pattern-recognition receptors (PRR). Virus-derived nucleic acids are sensed by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family and the toll-like receptor (TLR) family as well as the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors activate IRF3/7 and NF-κB signaling pathways to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses within the cell. However, to achieve a favorable outcome for the host, a balanced production of IFNs and activation of antiviral responses is required. Post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are crucial for this immune homeostasis in antiviral responses. Canonical PTMs including phosphorylation and ubiquitination have been extensively studied and other PTMs such as methylation, acetylation, SUMOylation, ADP-ribosylation and glutamylation are being increasingly implicated in antiviral innate immunity. Here we summarize our recent understanding of the most important PTMs regulating the antiviral innate immune response, and their role in virus-related immune pathogenesis.


Assuntos
DNA Viral/imunologia , Imunidade Inata , Processamento de Proteína Pós-Traducional , RNA Viral/imunologia , Viroses/imunologia , Animais , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L677-L686, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684545

RESUMO

Macrolides antibiotics have been effectively used in many chronic diseases, especially with Pseudomonas aeruginosa (P. aeruginosa) infection. The mechanisms underlying the therapeutic effects of macrolides in these diseases remain poorly understood. We established a mouse model of chronic lung infection using P. aeruginosa agar-beads, with azithromycin treatment or placebo. Lung injury, bacterial clearance, and inflammasome-related proteins were measured. In vitro, the inflammasomes activation induced by flagellin or ATP were assessed in LPS-primed macrophages with or without macrolides treatment. Plasma IL-18 levels were determined from patients who were diagnosed with bronchiectasis isolated with or without P. aeruginosa and treated with azithromycin for 3-5 days. Azithromycin treatment enhanced bacterial clearance and attenuated lung injury in mice chronically infected with P. aeruginosa, which resulted from the inhibition of caspase-1-dependent IL-1ß and IL-18 secretion. In vitro, azithromycin and erythromycin inhibited NLRC4 and NLRP3 inflammasomes activation. Plasma IL-18 levels were higher in bronchiectasis patients with P. aeruginosa isolation compared with healthy controls. Azithromycin administration markedly decreased IL-18 secretion in bronchiectasis patients. The results of this study reveal that azithromycin and erythromycin exert a novel anti-inflammatory effect by attenuating inflammasomes activation, which suggests potential treatment options for inflammasome-related diseases.


Assuntos
Bronquiectasia/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Macrolídeos/farmacologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Azitromicina/farmacologia , Bronquiectasia/microbiologia , Células Cultivadas , Humanos , Inflamassomos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia
19.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28652310

RESUMO

Exoenzyme Y (ExoY) is a type III secretion system effector found in 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY is a soluble nucleotidyl cyclase that increases the cytoplasmic levels of nucleoside 3',5'-cyclic monophosphates (cNMPs) to mediate endothelial Tau phosphorylation and permeability, its functional role in the innate immune response is still poorly understood. Transforming growth factor ß-activated kinase 1 (TAK1) is critical for mediating Toll-like receptor (TLR) signaling and subsequent activation of NF-κB and AP-1, which are transcriptional activators of innate immunity. Here, we report that ExoY inhibits proinflammatory cytokine production through suppressing the activation of TAK1 as well as downstream NF-κB and mitogen-activated protein (MAP) kinases. Mice infected with ExoY-deficient P. aeruginosa had higher levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6), more neutrophil recruitment, and a lower bacterial load in lung tissue than mice infected with wild-type P. aeruginosa Taken together, our findings identify a previously unknown mechanism by which P. aeruginosa ExoY inhibits the host innate immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , MAP Quinase Quinase Quinases/antagonistas & inibidores , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Glucosiltransferases/genética , Humanos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fósforo-Oxigênio Liases/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/enzimologia , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA